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Abstract 

DIFFUSE BRAIN INJURY TRIGGERS ULTRA-RAPID PERISOMATIC 
TRAUMATIC AXONAL INJURY, WALLERIAN CHANGE, AND NON-SPECIFIC 
INFLAMMATORY RESPONSES 

By Brian Joseph Kelley, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: John T. Povlishock, Ph.D. 
Professor and Chairman 

Department of Anatomy and Neurobiology 

A significant component of diffuse brain injury (DBI) is diffuse axonal injury 

(DAI) which is responsible for the morbidity and mortality associated with this 

condition. DAI and its experimental counterpart traumatic axonal injury (TAI) result in 

scattered microscopic pathology characterized by focal impairment of axonal transport 

leading to progressive swelling and delayed axotomy. DBI-mediated perisomatic 

axotomy does not result in acute neuronal death suggesting that delayed axotomy was 

responsible for this unanticipated response. To evaluate this hypothesis, we examined 

the spatiotemporal progression of DBI-mediated perisomatic TAI. LM / TEM identified 

impaired axonal transport within 15 - 30 min post-injury. Perisomatic TAI revealed 
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somata and related proximal / distal axonal segments with normal ultrastructural detail 

continuous with axonal swellings. In other cases, axotomy was confirmed by loss of 

axonal continuity distal to the swelling. By 60 - 180 min post-injury, somatic, proximal 

segment, and swelling ultrastructure were comparable to earlier time points although 

swelling diameter increased. Distal segment ultrastructure revealed the initial stages of 

Wallerian degeneration. Axotomy sites did not internalize pre-injury administered 

dextran suggesting pathogenesis independent of altered axolemmal permeability. Given 

the rapidity of perisomatic axotomy, absence of axolemmal permeability may constitute 

the more significant finding in terms of somatic protection. 

DBI-mediated neuroinflammatory reactions were then examined to see if this 

non-lethal neuronal pathology evoked responses comparable to those following focal 

injury. Microglia / macrophage responses within diffusely injured loci uncomplicated 

by focal pathology were explored using LM, TEM, and confocal evaluations as was 

albumin immunoreactivity to assess injury-induced blood-brain barrier (BBB) 

alterations. Initially, microglial activation was observed within injured loci while 

microglia within adjoining regions maintained resting phenotypes. Scattered activated 

microglia were observed among injured axons though no clear associations were seen. 

Later, activated microglia contained myelin debris while only limited microglial 

aggregations were recognized. Macrophages also localized to injured loci with select 

cells approximating somata of axotomized neurons. Immune cell observations 

correlated with altered BBB permeability. These data indicated rapid, yet initially 

uncoordinated, and persistent immune cell reactivity to DBI pathology. Taken together, 
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these responses suggest that histopathological evaluation following DBI may include 

non-lethal neuronal injury with unique neuroinflammatory findings. 
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Chapter 1 

GENERAL INTRODUCTION 

TRAUMATIC BRAIN INJURY: SOCIETAL AND ECONOMIC IMPACT 

Traumatic brain injury (TBI) is a significant societal problem affecting 

approximately 1.4 million individuals each year. While many TBI-related events go 

undiagnosed and untreated due to lack of debilitating clinical symptoms associated with 

mild head trauma, more moderate to severe injuries account for a significant number of 

hospitalizations. Approximately 1.1 million people are treated and released from 

emergency departments annually for TBI-related symptoms while 235,000 patients are 

hospitalized of which 80,000 - 90,000 cases result in long-term disability and 50,000 

cases result in death (Thurman et al., 1999; Langlois et al., 2004). Although these 

statistics are lower than those from previous years, the incidence of TBI is still 

approximately eight times greater than breast cancer and 34 times higher than 

HIVIAIDS causing one report to designate TBI the "invisible epidemic" (Traumatic 

Brain Injury 1999; Traumatic Brain Injury 2002). While all age groups are vulnerable to 

brain trauma, TBI affects primarily persons aged 0 - 14, 15 - 24 and over 75 (Thurman 

et al., 1999). Falls are the leading cause of TBI-related death and disability in children 

ages 0 - 14 and elderly people over age 75 while motor vehicle accidents are more 
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likely to affect adolescents and young adults ages 15 - 24. It should also be noted that 

the very young (ages 0 - 4) have an increased incidence of TBI when compared to the 

general population which is presumably a consequence of child abuse (1999). In 

addition to age stratification, TBI also demonstrates a gender bias with studies 

indicating that across all age categories, men are approximately twice as likely to suffer 

from brain injury than women (NIH Consensus Development Panel on Rehabilitation of 

Persons With Traumatic Brain Injury, 1999; Langlois et al., 2004). 

While data collection and analysis of TBI-related age and gender demographics 

is relatively straight forward, it is more difficult to estimate the financial impact of TBI 

on society due to the numerous costs associated with evaluation and treatment of the 

injured individual as well as economic burdens placed on caregivers. Direct costs of 

acute care and rehabilitation for individuals suffering TBI are an estimated 9 - 10 

billion dollars annually with a total economic impact of 56.3 billion dollars when 

supplementary factors such as long-term care, lost wages, and disability are included 

(NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic 

Brain Injury, 1999; Thurman, 2001; Traumatic Brain Injury 2002). 

A significant component of this estimated total expense is long-term care of the 

TBI patient. It is estimated that at least 5.3 million people (approximately 2% of the US 

population) are currently living with disabilities or require assistance to perform 

activities of daily living as a result of TBI (Thurman et al., 1999). Excluding mortality, 

TBI-related clinical outcomes range from return to normal function typically seen 

following mild injury to maintenance in a persistent vegetative state following severe 
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injury. Individuals sustaining mild TBI generally experience good outcomes with 

limited long-term complications although approximately 15 percent will have lingering 

problems including headaches, dizziness, attention deficits, and emotional liability 

(Alexander, 1995; Guerrero et al., 2000). Similarly, those individuals sustaining 

moderate injury may also have positive outcomes although the possibility of permanent 

disability or death increases (Levin, 1989). As one might expect, severely brain injured 

patients have the worst prognosis and often require full-time medical care when 

eventually released from the hospital. In addition to injury severity, age of the 

individual sustaining TBI is another important factor with respect to long-term outcome 

with older individuals (> 60 years) faring worse than their younger counterparts when 

subjected to injuries of comparable severity, presumably due to decreased brain 

plasticity (Katz and Alexander, 1994). 

With major economic burdens coming from both acute and long-term care 

expenses, education and prevention remain at the clinical forefront in reducing the 

incidence of TBI. Ongoing efforts to increase head injury protection awareness, to 

prevent falls, and to improve vehicle safety have made strides in reducing the number of 

severely head-injured people. Similarly, improved clinical management of hospitalized 

TBI patients has also improved long-term outcomes. Efforts to reduce TBI morbidity 

and mortality are also ongoing in the basic science realm through research into the 

underlying cellular and molecular pathobiology associated with this condition. Study of 

the intricate post-injury responses and interactions between various brain cell types and 

molecules remain active areas of investigation. As a more complete understanding of 
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the pathophysiological processes involved in TBI emerges, the importance of bench-to- 

bedside translational research will be highlighted, especially in areas such as therapeutic 

interventions targeting specific pathological events. 

While basic science research has advanced our understanding of TBI 

pathobiology, there remain many unanswered questions regarding the various 

mechanisms responsible for this "invisible epidemic." In that society's goal is to one 

day be able to intervene and prevent the devastating consequences of this debilitating 

condition, this dissertation was developed to provide additional insight into two major 

components of TBI pathogenesis. First, the spatiotemporal progression of a key 

component of diffuse TBI namely diffuse axonal injury (DAI), as known as traumatic 

axonal injury (TAI) in experimental settings, was evaluated in the perisomatic domain 

using a fluid percussion injury model of diffuse brain injury (DBI). Second, the 

neuroinflammatory responses accompanying DBI and its associated pathology were 

explored. To outline this dissertation, a general introduction to TBI and its components 

is first provided to give background on this pathology. This is followed by individual 

chapters devoted to perisomatic TAI pathogenesis (Chapter 2) and microglial / 

macrophages responses to DBI (Chapter 3). A general discussion (Chapter 4) is then 

offered to provide additional insight into these observations and to suggest future 

studies aimed at developing a more comprehensive understanding of these events. 

Ultimately, as our understanding of the underlying pathophysiology of TBI continues to 

improve, we must translate our basic science findings to the clinical arena with the hope 
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of offering concomitant improvements in medical care and long-term outcomes for TBI 

patients. 

TRAUMATIC BRAIN INJURY: GENERAL OVERVIEW 

The term "TBI" is used to describe a wide variety of clinical conditions ranging 

from concussion following closed head injury to missile injury from a gunshot wound. 

Although both are considered to be "TBI," their respective mechanisms of injury and 

consequent pathologies differ significantly. Recent basic science characterization has 

divided TBI into four phases of pathogenesis: the primary injury, the delayed 

consequences of the primary injury, secondary or additional injury, and recovery and 

functional outcome (Graham et al., 2002) with each of these stages affected by 

numerous factors. For example, the primary injury is dictated by the type, location, and 

size of injury produced by the causative agent while secondary injury is influenced by 

co-morbidities associated with brain trauma such as elevated intracranial pressure and 

ionic dysregulation. While the above characterization offers a synopsis of general TBI- 

related pathologies, a more descriptive classification outlined below utilizes injury 

location. 

To begin to describe the pathogenesis of brain trauma, TBI may be first 

stratified into two major categories: focal and diffuse injury. This distinction is not 

arbitrary given that the need for surgical evaluation in focal injury is much greater than 

in diffuse injury (Graham et al., 2002). Focal brain injury, which most often occurs as a 

result of direct impact of the brain against the cranial vault, is characterized primarily 

by contusions, hemorrhages 1 hematomas, andlor mass lesions. These outcomes are in 
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contrast to the effects of diffuse injury that typically occur via rapid acceleration - 

deceleration of the cranium with or without impact resulting in shear forces distributed 

throughout the brain parenchyma (Graham, 1996). While focal injury is often visible 

either grossly or with clinical imaging techniques, diffuse pathology is more subtle 

given the injury dynamics and distribution. Diffuse brain pathology is microscopic in 

nature and involves cellular changes scattered throughout various anatomical loci. It is 

often difficult to detect using conventional imaging and therefore the diagnosis of DBI 

is often based on neurological deficits found during clinical examination or via post- 

mortem histological examination of specimens stained with antibody markers of 

neuronal injury. Although focal and diffuse injury may appear to be unique entities, 

they are often found within a single brain (Finnie et al., 2002). This observation 

highlights the complexity of TI31 and illustrates the difficulty of studying either focal or 

diffuse pathology in isolation. 

Focal versus Diffuse Injury 

As noted, TBI may be classified as either focal or diffuse depending on the type 

and size of injury as well as brain localization. Focal damage includes pathologies such 

as contusion and/or laceration to the brain surface, intracranial hematoma, hemorrhage 

and infarction in the brainstem, and abscess formation (Graham et al., 2002). 

Distinguishing characteristics of focal brain injury include similar fates for related cell 

types within an injury nidus and diminishing pathological severity as the distance away 

from the nidus increases. For example, following a severe focal brain contusion, the 
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ensuing pathology consists of rapidly necrotic cell death creating a necrotic central core 

which is surrounded by a penumbral region of heterogeneously injured cells which may 

die via delayed apoptosis (Clark et al., 1999), thus expanding the core region. Within or 

immediately adjacent to the penumbra, cells may be only transiently affected and 

survive to recover normal function (Adams, 1992). Ultimately, this transiently affected 

area is encircled by uninjured tissue giving the overall injury location a concentric 

circular appearance in terms of cellular injury severity, with more severe injury at the 

center and little to no injury at the margins. 

The focal injury force is concentrated on a local area and typically results in 

immediate physical damage to cells. If sufficient magnitude is applied, cells will 

experience direct mechanical injury to their membranes leading to loss of ionic 

homeostasis. Ionic dysregulation leads to loss of energy substrate production and 

various intracellular pathologies ultimately culminating in necrotic cell death. Those 

cells immediately adjacent to the central impact location experience varying degrees of 

force resulting in variety of pathological outcomes. Thus force magnitude is responsible 

for the size over which the focal injury extends into the brain parenchyma. From the 

standpoint of diagnosis and treatment, the location of focal injury may be determined 

based on neurological deficits observed during clinical examination andlor imaging 

techniques, depending on the patient's level of consciousness. 

Conversely, diffuse injury exists in primarily four forms: diffuse axonal injury, 

diffuse hypoxic brain damage, diffuse brain swelling, and diffuse vascular injury. 

Diffuse injury results from dynamic loading via impact or impulsive forces with strain 
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being the proximate cause of brain tissue injury. The types of strain responsible for 

pathology include primarily tension and shear (Graham et al., 2002). When these strain 

forces exceed certain viscoelastic property thresholds for neurons andlor other cell types 

within the brain, damage to cell membranes and fibers occurs resulting in altered 

permeability and possible mechanical tearing. Although strain forces during injury may 

result in immediate tearing of cell membranes, forces causing transient membrane 

perturbation without mechanical rupture may also initiate of a number of pathological 

cascades resulting in delayed pathology. 

During trauma, strain forces are distributed throughout the brain with varying 

degrees of severity exposing cells to unequal levels of perturbation (Margulies and 

Thibault, 1989; Margulies et al., 1990). For example, experimental studies have 

determined that the gray-white matter interface is selectively vulnerable to shear forces, 

presumably due to the differing densities of the two areas, resulting in axonal damage 

following rapid acceleration and deceleration (Meaney et al., 1995; Smith et al., 1997). 

While certain axons may be exposed to forces sufficient to cause injury, other 

neighboring fibers may not be damaged despite experiencing similar albeit unequal 

forces. This phenomenon results in heterogeneous injury of a diffuse nature. Therefore, 

unlike focal TBI, the extent of diffuse injury is more difficult to diagnose and treat due 

to more variable areas of the brain being affected as well as the microscopic nature of 

injury which makes diagnostic imaging difficult. 

Ultimately, focal and diffuse injury may be thought of as ends of a continuum 

between which TBI-related conditions fall. Although focal and diffuse brain injury can 
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occur in isolation, in many cases aspects of both injuries can be found within an 

individual brain. One might envision a scenario (e.g. motor vehicle accident) during 

which the brain may experience supra-threshold tension and shear strains due to rapid 

deceleration causing altered membrane permeability and mechanical tearing followed 

by impact with the cranial vault causing a contusion. Therefore, in order to discern the 

various pathological mechanisms following focal and diffuse TBI, one must attempt to 

study either focal or diffuse injury in isolation with the understanding that these 

complex pathologies often overlap within an individual traumatically injured brain. 

DIFFUSE / TRAUMATIC AXONAL INJURY: GENERAL INTRODUCTION 

Although there are four primary forms of diffuse TBI, diffuse axonal injury 

(DAI) has received the most attention due to its association with poor prognoses 

following injury (Graham, 1996). As noted, the ability to diagnose DBI is hampered by 

the microscopic nature of injury. Conventional imaging techniques may offer signatures 

of DAI but lack the resolution to examine individual axons and determine their health 

following trauma. Often times, a final clinical diagnosis of DAI is reached by default 

after ruling out other possible pathologies. For example, a physical examination (e.g. an 

unresponsive comatose patient) that is incongruent with diagnostic radiographic 

findings (e.g. various imaging scans fail to show significant brain pathology) is often 

diagnostic for severe DAI. The histological pathology of DAI is characterized by 

widespread axonal damage in the brainstem, parasagittal white matter of the cerebral 

cortex, and corpus callosum and is a consistent feature of TBI (Adams et al., 1989; 
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Meythaler et al., 2001). To provide a more thorough understanding of DAI, the 

following sections first discuss the historical and current clinical perspectives. This is 

followed by a descriptive characterization of traumatic axonal injury (TAI), the 

experimental counterpart of DAI, and the molecular processes responsible for its 

pathogenesis. 

Diffuse Axonal Injury: Historical Perspective 

The first microscopic identification of DAI was made in 1956 when Sabina 

Strich examined five severely disabled individuals surviving for between five and 15 

months following TBI (Strich, 1956). During post-mortem examination of brain 

specimens, Strich observed "diffuse degeneration" of cerebral hemisphere white matter. 

Otherwise, minor pathological changes were noted that were inconsistent with the 

overall severity of injury demonstrated during clinical examination prior to autopsy. 

Although the mechanical force of injury was suggested as a contributing factor, it was 

not until a follow-up study five years later that Strich identified 15 additional patients 

with similar pathologic findings and concluded that there was immediate shearing of 

nerve fibers at the time of injury and that this pathology was marked by the presence of 

"retraction balls" at the ends of these interrupted fibers (Strich, 1961). Strich discussed 

the implications of head movement in a variety of rotational and angular planes and 

concluded that ". . . nerve fibers running in a particular direction would be selectively 

damaged in one hemisphere and spared in the other, the quantity of damage being the 

same on the two sides" (Strich, 1961). Although her initial assessment of axonal injury 
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pathogenesis was partially flawed, Strich's pioneering work laid the foundation for 

more comprehensive analyses of axonal damage following TBI. 

Comprehensive examinations into the mechanisms of axonal injury and 

disconnection began in the late 1970's and early 1980's with the development of TBI 

animal models capable of reproducing axonal injury (Sullivan et al., 1976; Gennarelli et 

a]., 1982). Although not initially intended to examine axonal pathology, Sullivan and 

colleagues developed a feline model in which a swinging weight would strike a piston 

connected to a saline filled reservoir which, in turn, was connected to the epidural space 

of the animal (Sullivan et al., 1976). This fluid percussion injury device produced an 

elastic deformation in the brain similar to that seen in human head injury. However, it 

was not until several years later that Povlishock and colleagues first reported the diffuse 

axonal pathology generated by this model (Povlishock et al., 1983). One year prior to 

the observations made by Povlishock, Gennarelli and colleagues developed the first 

model capable of eliciting symptoms and axonal pathology consistent with that 

observed in severe human head injury (Gennarelli et al., 1982). Using a primate model, 

animals were subjected to sagittal, oblique, and lateral head motion with select animals 

experiencing post-injury coma in the absence of overt pathological change. Similarly, 

there was microscopic evidence of diffuse axonal swelling and disconnection, 

observations similar to those made by Strich. Gennarelli, as well as Adams whose 

article appeared in the same journal, termed this phenomenon "diffuse axonal injury" or 

DAI (Adams et al., 1982; Gennarelli et al., 1982). 
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As mentioned, the first study characterizing the axonal response to TBI-induced 

DAI was performed by Povlishock and colleagues (Povlishock et al., 1983). In this 

work, horseradish peroxidase (HRP) was injected into the motor cortex prior to fluid 

percussion injury. Capitalizing on the fact that HPR would be taken up by neurons and 

subsequently undergo anterograde transport down the axonal cylinder, this study was 

designed to show the spillage of HRP into the surrounding brain parenchyma 

immediately following TBI-induced axotomy based on Strich's hypothesis that axonal 

retraction balls were formed by extrusion of axonal contents at the injury site (Strich, 

1961). However, this observation was not seen. Rather, focal HRP accumulations were 

observed within continuous axons at early post-injury time points. At later times, these 

HRP-laden swellings enlarged and eventually lost continuity and disconnected from 

their downstream segments while restricting HRP to the intra-axonal compartment 

(Povlishock et al., 1983). These novel observations led to the following conclusions: 

First, not all fibers undergo immediate axotomy post-injury and second, that during this 

process of delayed axotomy, axonal injury appears to take place without permanent loss 

of membrane integrity. 

These initial observations provided the framework for future experiments 

designed to examine DAI pathobiology. Research into the spatiotemporal progression 

and mechanisms of DAI has provided unique insights into the development of TBI- 

induced axonal injury. As will be discussed in subsequent sections, our clinical and 

basic science comprehension of DAI over the last 30 years has grown tremendously in 

its breadth and sophistication. 
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Diffuse Axonal Injury: Clinical Perspective 

The predominant pathological mechanism in most cases of TBI is DAI (Bennett 

et al., 1995). However, given the diffuse and microscopic nature of injury, many TBI 

patients with underlying DAI will have minimal changes noted on computed 

tomography (CT) and magnetic resonance imaging (MRI) scans during clinical 

evaluation (Bazarian et al., 2006). One prognostic indicator of DAI that may be seen on 

imaging are punctate hemorrhages that are associated with blood that extravasates from 

small vessels and that occur in areas of the brain contiguous with DAI (Meythaler et al., 

2001). Shear forces responsible for axonal damage are also believed to create small 

tears in the vasculature causing small focal hemorrhages that enhance when imaged. 

These imaging findings along with clinical diagnoses of coma and/or low Glasgow 

Coma Score (e.g. GCS < 8) are strongly diagnostic for severe DAI. Mild to moderate 

DAI diagnoses rely primarily on neurological and/or cognitive deficits found during 

more routine clinical examination. 

To provide clinical classification for DAI severity, Adams and colleagues 

developed a grading system based on post-mortem brain distribution of axonal 

pathology (Adams et al., 1977; Adams et al., 1989; Adams, 1992). In this classification, 

mild or grade 1 DAI is characterized by microscopic changes in the white matter of the 

cerebral cortex, corpus callosum, brainstem, and occasionally the cerebellum. Moderate 

(grade 2) DAI is defined by grossly evident focal lesions isolated to the corpus 

callosum. In severe (grade 3) DAI, there are additional focal lesions in the dorsolateral 

quadrants of the rostra1 brainstem, commonly the superior cerebellar peduncle. 
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Although the basis for this classification scheme is limited to post-mortem analyses, 

evidence of punctate hemorrhages found on imaging studies and located at the above 

mentioned anatomic loci may offer diagnostic insight into injury severity. 

Improved scientific understanding of DAI pathogenesis has provided 

opportunities to develop treatment strategies aimed at prevention / attenuation of axonal 

pathology following TBI. From work in animal models, pathological characteristics 

such as delayed axonal swelling and disconnection have been elucidated. Given this 

delayed axotomy component, DAI offers a unique "therapeutic window" during which 

pharmacological andlor physiological manipulations may be employed to improve 

patient outcome. Although advancements in clinical intensive care management have 

improved patient outcomes, concomitant therapeutic treatment options have not been as 

forthcoming. Several pharmaceutical agents showing promise in animal studies have 

not achieved similar success when carried over to the clinical realm (Narayan et al., 

2002). Similarly, attempts to slow TBI-induced pathological cascades by cooling 

patients to a hypothermic state followed by rewarming remains experimental and thus, 

controversial (Clifton et al., 2001; Markgraf et al., 2001). The inability of a single 

therapeutic intervention to fully attenuate DAI highlights the multiple pathological 

processes at work following trauma. These processes are the focus of the next section. 

Traumatic Axonal Injury - Initiating Events 

A point of clarification concerning nomenclature is necessary prior to a 

descriptive characterization of DAI pathobiology. The term "diffuse axonal injury" is 
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used to describe the human clinical condition associated with brain trauma. Given the 

importance of animal modeling to DAI hypothesis testing and the related difficulty in 

translating experimental results to the human condition, different terminology is used 

when discussing DAI within the context of basic science research. Rather, "traumatic 

axonal injury" (TAI) is reserved for pathology found in animal models of TBI and may 

refer to diffuse injury or injury within a single axon. Thus, "TAI" is used throughout 

this section to denote axonal injury within the context of experimental diffuse TBI. 

Similar to the continuum of potential clinical conditions created by focal and 

diffuse injury, TAI also demonstrates a continuum of pathological change. TAI as a 

consequence of DBI may range from immediate tearing of the axonal membrane 

following trauma to fibers that experience shear and tensile strain forces but are not 

immediately severed. At one end of the continuum are strain forces sufficient to tear 

axons immediately following trauma resulting in what is known as "primary axotomy" 

or disruptive axonal injury (Maxwell et al., 1997). The remaining forces are of 

intermediate severity which do not cause immediate tearing but are responsible for 

initiating pathological mechanisms resulting in delayed 1 "secondary axotomy" or non- 

disruptive axonal injury during which axonal disconnection takes place at some point 

following the initial insult. 

Historically, two hypotheses attempted to explain the biochemical and 

biophysical mechanisms occurring within axons that initiate secondary axotomy 

(Fitzpatrick et al., 1998). Although both implicated the axolemma as the initial site from 

which traumatically induced axonal pathology persists, they differed in their mechanism 
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of action. Adams and colleagues along with others proposed that focal perturbation of 

the axolemma was the crucial initiating event (Adams et al., 1982; Gennarelli et al., 

1982; Adams et al., 1989; Maxwell et al., 1991). This perturbation was associated with 

increased permeability of the axolemma causing loss of ionic homeostasis across the 

axonal membrane and allowing for influx of extracellular calcium. Increased intra- 

axonal calcium, in turn, stimulated activation of proteolytic enzymes that caused 

collapse and dissolution of the axonal cytoskeleton, which disrupted axonal transport 

leading to organelle accumulation, axonal swelling, and progression towards secondary 

axotomy. On the other hand, Povlishock and colleagues proposed that the physical 

forces of injury directly perturbed the intra-axonal ultrastructure leading to altered 

cytoskeletal alignment and consequent impaired axonal transport (Povlishock, 1992; 

Grady et al., 1993; Christman et al., 1994). 

More recent work by the Povlishock group has demonstrated that the initiating 

events in TAI pathogenesis are heterogeneous and complex processes thought to 

involve multiple and varied pathologies including the possibility of altered axolemmal 

permeability. To explore potential alterations in axolemmal permeability, the use of 

extracellular tracers, namely horseradish peroxidase (HRP; MW = 44 kDa) and high 

molecular weight dextrans (MW = 10 & 40 kDa) normally excluded from intact axons, 

was employed in separate animal models of DBI. The rationale for these studies was to 

show that if axonal perturbation led to altered permeability, then these extracellular 

tracers would enter the axon thus marking not only axonal injury but also sites of focal 

perturbation. Pettus and colleagues first explored this concept by flooding the extra- 



www.manaraa.com

17 

axonal space within the brainstem with HRP and then demonstrated HRP movement 

into the intra-axonal space immediately following moderate but not mild TBI (Pettus et 

al., 1994). Subsequent work confirmed these observations and given the lack of specific 

neuronal HRP uptake, were interpreted to mean that physical injury caused a focal 

membrane opening (i.e. mechanoporation) allowing for HRP influx (Pettus and 

Povlishock, 1996). Similar work using high molecular weight dextrans 

intracerebroventricularly infused prior to injury to evaluate somatic permeability 

following DBI revealed multiple independent neuronal injury phenotypes including 

evidence suggesting both permeabilized and non-permeabilized axons (Singleton and 

Povlishock, 2004). Finally, in work presented in the next chapter, data showed that 

thalamic perisomatic axonal injury occurred independently of overt alterations in axonal 

permeability based on exclusion of pre-injury administered dextrans from injured 

axons. Collectively, these observations highlight the heterogeneity of initial axolemmal 

involvement in TAI pathogenesis. 

In addition to the Povlishock group, other groups have also explored initiating 

mechanisms of axonal injury following DBI. Using a related in vitro stretch injury 

model which mimics the tensile loading incurred by axons during diffuse injury, Wolf 

and colleagues identified ion channels as a causative agent. Using ion sensitive dyes in 

combination with channel blockers, stretch injury did not cause mechanoporation 

allowing for passage of extracellular tracers into the intra-axonal space of cultured 

neurites. Instead, aberrant sodium channel opening was observed leading to 

depolarization and increased intra-axonal sodium concentrations. These elevated 
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sodium levels caused opening of voltage-gated calcium channels and reverse operation 

of the sodium-calcium exchanger, both of which led to increased intra-axonal calcium 

levels (Wolf et al., 2001). In addition to these observations, similar work by Smith and 

colleagues also illustrated axonal injury in the absence of dye uptake following stretch 

injury (Smith et al., 1999). More recent in vivo work by Stone and colleagues suggested 

that altered axolemmal permeability occurs only within a subset of uniquely injured 

axonal fibers following TBI (Stone et al., 2004). 

Despite the heterogeneity surrounding the role of axolemmal perturbation as the 

causative agent for TAI, the unregulated entry of calcium into the axon following 

trauma is undoubtedly responsible for proteolytic cascade activation leading to 

cytoskeletal pathology. Calcium has been identified as a key mediator in a variety of 

neuronal pathological pathways (Young, 1996). Within the context of TAI, calcium has 

been identified at sites of focal injury (Maxwell et al., 1995) and has been shown to 

stimulate a number of proteolytic enzymes which target the axonal cytoskeleton leading 

to altered ultrastructural morphology (Buki et al., 1999; Buki et al., 2000). Focal 

cytoskeletal alterations in neurofilament, microtubule, and subaxolemmal spectrin 

ultrastructure lead to impairment of axonal transport at these sites. Despite axonal 

injury, continued anterograde transport from the soma results in organelle pooling at the 

site of impaired transport which causes focal axonal swelling. Axonal swelling may 

progresses over time ultimately leading to axotomy and disconnection although a recent 

study from the Povlishock group indicates that neurofilament compaction, occurring 



www.manaraa.com

19 

independently of impaired axonal transport, may also be responsible for TAI pathology 

(Marmarou et al., 2005). 

Markers of Traumatic Axonal Injury 

TAI is marked by impaired axonal transport and altered cytoskeletal 

ultrastructure. It would therefore seem reasonable and rational to exploit these 

characteristics when trying to identify traumatically injured axons following DBI. 

However, in studies first identifying TAI, Strich utilized silver impregnation methods to 

identify swollen axons (Strich, 1956; Strich, 1961). Although the mechanism by which 

injured axons are marked with silver labeling remains poorly understood and is thought 

to underestimate the total number of injured fibers (Gentleman et al., 1995), this 

methodology is still used to identify axonal injury, primarily in white matter tracts 

(Hicks et al., 1996; Adelson et al., 2001; Ding et al., 2001; Gallyas et al., 2002; Hall et 

al., 2005a; Hall et al., 2005b). A second and better understood marker of TAI first 

utilized by Povlishock and colleagues is horseradish peroxidase (HRP). Following 

somatic uptake via endocytosis, HRP-laden vesicles move via fast anterograde axonal 

transport and pool at sites of axonal injury marked by impairment of axonal transport. 

With axonal injury and subsequent impairment of axonal transport being focal events, 

continued delivery of anterogradely transported molecules, such as HRP, lead to 

progressive swelling and immunoreactivity in initially continuous but later disconnected 

reactive axonal swellings (Povlishock et al., 1983). HRP was later found to have the 

added advantage of marking sites of traumatically-induced alterations in axolemmal 
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throughout the extracellular brain parenchyma (Pettus et al., 1994). More recently, 

antibodies to specific neurofilament subunits have been useful in marking altered 

cytoskeletal morphology at sites of axonal injury (Grady et al., 1993; Maxwell and 

Graham, 1997; Povlishock et al., 1997). 

However, the current standard for detection of axonal injury following traumatic 

insult is visualization of P-amyloid precursor protein (APP). APP was first utilized as a 

marker for axonal injury by Gentleman and colleagues (Gentleman et al., 1993) after an 

earlier study by Shigematsu and McGeer revealed swollen APP positive axons, similar 

to those seen following trauma, within the periventricular white matter following the 

application of the microtubule stabilizing agent colchicine (Shigematsu and McGeer, 

1992). APP is an integral membrane protein that undergoes vesicular-mediated fast 

anterograde axonal transport. Similar to the mechanism by which HRP marks sites of 

axonal injury, APP moves along the axon until reaching a site of focally impaired 

transport at which point the site of axonal injury will undergo expansion due to the 

continued delivery of transported organelles. Focal APP accumulation at the site of 

impaired axonal transport will lead to increased immunoreactivity of the injury focus as 

well as the related proximal axonal segment and corresponding soma. Visualization via 

routine antibody processing (Stone et al., 2000) allows for identification of axonal 

injury within white matter tracts as well as at perisomatic locations. The ~ltility of APP 

antibody immunoreactivity as a specific marker for axonal injury has gained wide 

acceptance in studies of both basic science and forensic pathology (Blumbergs et al., 
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1994; McKenzie et al., 1994; Sherriff et al., 1994a; Sherriff et al., 1994b; Blumbergs et 

al., 1995; Gentleman et al., 1995; Lewen et al., 1995; Li et al., 1995; Ahlgren et al., 

1996; Lewis et al., 1996; McKenzie et al., 1996; Pierce et al., 1996; Abou-Hamden et 

al., 1997; Bramlett et al., 1997; Geddes et al., 1997; Murakami et al., 1998; Oehmichen 

et al., 1998; Van den Heuvel C. et al., 1998; Gleckman et al., 1999; Stone et al., 1999; 

Finnie et al., 2000; Masumura et al., 2000; Stone et al., 2000; Singleton et al., 2002). 

Traumatic Axonal Injury - Cytoskeleton and Related Pathology 

While altered axolemmal permeability and elevated intra-axonal calcium are the 

initiators of TAI pathogenesis, the resultant cytoskeletal pathology is responsible for the 

morphological change observed in injured axons following DBI. Therefore, in order to 

outline TAI pathogenesis, background information on axonal cytoskeletal composition 

is first provided. This information provides a conceptual framework on which 

mechanisms of TAI-related cytoskeletal pathology are discussed. 

There are three distinct interacting structural proteins that comprise the neuronal 

cytoskeleton: microtubules (MTs), neurofilaments (NFs), and microfilaments (MFs) 

(Siege1 et al., 1999). Together, these proteins form the dynamic structural latticework, 

encompassed by the axolemma, which serves as a scaffold for neuronal 

cytoarchitecture. Neurons are a highly polarized cell type that must transduce signals 

from one end of the cell to the other and thus, are highly dependent on their structural 

integrity to maintain their function. This polarization results in an axonal cytoskeletal 

composition that is distinct from that found in the somatic and dendritic compartments. 
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The axonal cytoskeleton is characterized by MTs arranged in small clusters along with 

dense arrays of NFs and a subaxolemmal network of MFs. Axonal MTs have uniform 

orientation (Kirkpatrick and Brady, 1999) which has implications for intracellular 

trafficking of membrane-bound organelles via molecular motor proteins (Brady, 199 1 ; 

Vallee and Bloom, 1991). Similarly, NFs are oriented longitudinally, parallel to each 

other, and are inter-connected (Hirokawa, 1991). Interestingly, the composition of 

cytoskeletal elements within the axon dictates axonal caliber and thus controls the speed 

of impulse propagation (Pijak et al., 1996; Elder et al., 1998). This section offers a 

detailed description of each cytoskeletal protein along with their respective roles in 

axonal cytoarchitecture, intracellular transport, and TAI-related pathology. 

Axonal Cytoskeleton 

Microtubules (MTs) consist of polymers of globular tubulin subunits arranged in 

a cylindrical tube measuring 24 nm in diameter. Each tubulin dimer consists of two 

closely related polypeptides, a and P-tubulin (Schwartz and Westbrook, 2000). Head-to- 

tail arrays of tubulin heterodimers give protofilaments of which 13 are arranged in a 

tubular array around a hollow core. Tubulin heterodimer orientation imparts polarity to 

the MT, creating plus (fast-growing) and minus (slow-growing) ends. As noted, this 

polarity has intra-neuronal regional specificity with axonal MTs having minus ends 

oriented towards the cell body and plus ends oriented towards the nerve terminal 

(Heidemann SR et al., 1985). Although exhibiting "dynamic instability" during which 

they oscillate between growth and shortening phases (Mitchison and Kirschner, 1984), 
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neuronal MTs are relatively stable structures due to post-translational modification of 

tubulin following incorporation into the MT framework and alteration of intrinsic MT 

properties via binding by a class of molecules known as microtubule-associated proteins 

(MAPs). There are several MAPs, each of which demonstrates regional specificity, with 

tau being unique to axonal cytoarchitecture (Vallee et al., 1984). 

In addition to structural support, MTs function as a "highway" for bidirectional 

organelle transport (Goldstein and Yang, 2000) to exchange structural and functional 

materials within the neuron. Organelle movement within the axon is either away from 

the soma (anterograde) or towards the soma (retrograde) (Lodish et al., 1999). This 

directed movement may be exploited to identify loci of axonal injury following trauma 

via use of antibodies targeting anterogradely transported proteins. These proteins collect 

at sites of impaired axonal transport thus identifying sites of axonal injury. 

Neurofilaments (NFs) are stable polymers of neuron-specific intermediate 

filaments that do not demonstrate the dynamic properties of MTs (Schwartz and 

Westbrook, 2000). Grouped as "intermediate" because their diameter (10 nm) is 

between that of MTs and MFs (discussed shortly), NFs are assembled into rope-like 

filaments that twist around each other to produce coils of increasing thickness. 

Monomers form heterodimers which aggregate into tetrameric complexes known as 

protofilaments. Two protofilaments join to become a protofibril and three protofibrils 

twist helically to form the NF (Bershadsky and Vasiliev, 1988). In contrast to MTs and 

MFs which contain globular proteins and have polarity, NF monomers are highly 

elongated apolar fibrous proteins when assembled (Cooper, 2000). There are three 
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primary NF polypeptides: NF-light (NF-L), NF-medium (NF-M), and NF-heavy (NF- 

H), which differ in molecular weight (60-70, 130- 170, and 180-200 kDa respectively). 

Polymer formation requires the NF-L subunit together with either the NF-M or NF-H 

subunit (Julien and Mushynski, 1998). Once assembled, NFs are transported to their site 

of incorporation into the cytoskeletal network (Nixon et al., 1989). During transport, all 

three NF subunits undergo a complex pattern of phosphorylation and dephosphorylation 

which regulates the different assembly states of the protein before and during axonal 

transport (Sihag and Nixon, 1989; Sihag and Nixon, 1990). 

NFs differ from other intermediate filaments by their sidearms that project from 

the surface and cause them to be widely spaced (Lee and Cleveland, 1996; Kirkpatrick 

and Brady, 1999). Sidearms are the carboxy-terminal regions of the NF-M and NF-H 

polypeptides and contain a large number of consensus phosphorylation sites (KSP {Lys- 

Ser-Pro } sequence repeats) targeted by various kinases (Shaw, 199 1 ; Julien and 

Mushynski, 1998). Sidearm phosphorylation alters the charge density on the NF 

surface, repelling adjacent NFs with similar charge (Gotow et al., 1994) and is a major 

determinant of axonal diameter (Brady, 1993). Sidearms are also thought to play a 

structural support role through binding to MTs (Lodish et al., 1999). 

Microfilaments (MFs) are dynamic components of the membrane cytoskeleton, 

the area immediately adjacent to the plasma membrane (Hitt and Luna, 1994; Beck and 

Nelson, 1996). MFs are formed from globular actin monomers (G-actin) arranged like 

two strings of pearls intertwined into fibrils 4-6 nm in diameter (Kirkpatrick and Brady, 

1999). Each actin monomer has binding sites that mediate head-to-tail interactions with 
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polymer (F-actin) is uniformly oriented and demonstrates polarity. MFs are organized 

into a meshwork of short oligomers near the axolemma and axonal MTs (Kirkpatrick 

and Brady, 1999). 

In addition to actin MFs, several MF-associated proteins have been described 

(Vandekerckhove and Vancompernolle, 1992). These proteins provide further structural 

support to the membrane cytoskeleton via actin binding. One protein relevant to TAI 

pathology is spectrin. Spectrin is a flexible, rod-shaped molecule composed of 

homologous a and P subunits originally characterized in the erythrocyte membrane 

cytoskeleton. Spectrin heterodimers align to form tetramers which are cross-linked by 

short actin MFs (Kirkpatrick and Brady, 1999). This spectrin-actin network is coupled 

to the plasma membrane through direct binding to membrane proteins and serves to 

stabilize the membrane. 

Cytoskeletal Pathology 

To determine axonal cytoskeletal alterations at the injury site, the injured area 

must be first identified and visualized. TAI is associated with focally impaired axonal 

transport and concomitant axonal swelling. Capitalizing on the fact that post-injury 

axonal transport remains functional but is focally disrupted, immunohistochemistry with 

antibodies to P-APP, a molecule which moves via vesicular-mediated anterograde 

transport, is used to target the site of impaired axonal transport. APP and other 

intracellular organelles are anterogradely transported to a site at which they can 
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progress no further. The continued delivery and accumulation of APP and organelles at 

this site results in focal axonal swelling. APP may be visualized using routine light 

microscopy followed by tissue processing for electron microscopy to examine axonal 

ultrastructure. 

Previous studies of TAI pathology have demonstrated cytoskeletal disruption at 

focal axonal swellings. In long tract axons of the brainstem, Pettus and Povlishock first 

noted NF misalignment and alterations in axolemmal permeability associated with rapid 

local NF compaction following moderate TBI, leading to delayed progression of 

reactive axonal change (Pettus et al., 1994). A subsequent study provided more 

complete cytoskeletal characterization including decreased inter-NF spacing associated 

with loss of sidearm projections, as well as increased NF packing and decreased MT 

density following moderate TBI (Pettus and Povlishock, 1996). These changes were 

hypothesized to cause focal impairment of axonal transport due to local ionic 

dysregulation given the passage of HRP into damaged fibers. Similar work by Maxwell 

and Graham showed focal reactive axonal change with loss of axonal MTs and NFs 

following non-disruptive optic nerve stretch injury (Maxwell and Graham, 1997) as did 

comprehensive morphological quantification studies by Jafari and colleagues (Jafari et 

al., 1997; Jafari et al., 1998). Further studies examining long tract axonal NF sidearms 

following TBI demonstrated focal alterations and consequent NF compaction associated 

with sites of traumatically-induced axolemmal permeability changes (Povlishock et al., 

1997; Okonkwo et al., 1998). 
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While these studies focused on MT and NF pathology, observations of direct 

MF disruption have not been as forthcoming; however, membrane cytoskeletal 

pathology has been observed indirectly using routine immunohistochemistry targeting 

spectrin breakdown products that result from TBI-induced proteolytic degradation. A 

predominant group of proteases implicated in TAI pathogenesis are the calcium- 

activated neutral proteases known as calpains. When intra-axonal calcium levels reach 

sufficient concentrations, calcium binds to the inactive calpain molecule, resulting in 

activation of the protease (Kampfl et al., 1997). Using antibodies targeting calpain- 

mediated spectrin proteolysis (CMSP) products, Buki and colleagues demonstrated a 

spatiotemporal correlation between focal, intra-axonal CMSP and NF compaction 

following TBI, implicating calpain activation in TAI pathogenesis and spectrin as a 

target for this pathological activation (Buki et al., 1999). Another proteolytic molecule 

activated following TBI is the cysteine protease caspase-3 (Yakovlev et al., 1997; 

Raghupathi et al., 2000; Yakovlev and Faden, 2001). Caspase-3 activity has been 

indirectly documented in traumatically injured axons using antibodies targeting the 

specific caspase-3-mediated breakdown product of spectrin (Buki et al., 2000). 

Taken together, TBI-induced protease activation destabilizes the axon within the 

central region (MTs 1 NFs) and at the membrane cytoskeleton (MFs / spectrin). 

Cytoskeletal destabilization contributes to continued axolemmal instability following 

the initial transient perturbation, allowing for further ionic dysregulation and increased 

calcium entry that stimulates ongoing pathology. This cycle of membrane instability 

followed by cytoskeletal degradation culminates in axonal disconnection due to collapse 
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of the cytoskeletal network. It is important to remember that axonal disconnection is 

delayed relative to the initial trauma. Delayed / secondary axotomy is caused by the 

time needed to activate pathological cascades ultimately leading to cytoskeletal 

collapse. This delayed pathological process is the focus of the next section and as will 

be discussed in Chapter 2, TAI within the perisomatic domain results in an ultra-rapid 

secondary axotomy with delay times significantly shorter than those reported in 

previous studies. 

Traumatic Axonal Injury - The Somatic Response and Axotomy 

TAI leading to axotomy and disconnection may be generated by a variety of 

experimental methods. Within the context of DBI, application of shear and tensile 

forces to the whole brain results in axonal pathology at various anatomical loci. These 

initiating forces may not immediately sever axons. Rather, they may stimulate the 

aforementioned pathological processes with evidence of axonal damage visible only 

after sufficient time has passed allowing for pathway activation. The time needed for 

pathway activation results in delayed disconnection which is the hallmark characteristic 

of secondary axotomy. On the other hand, axonal disconnection via direct surgical / 

mechanical severance is classified as primary axotomy in that the injury to the axon is 

the initiating pathology as opposed to a consequence of trauma. 

Initial studies of axotomy and its related consequences employed direct 

severance of axonal tracts due to its relative ease and specificity (Cajal, 1914; 

Lieberman, 197 1 ; Barron, 1983). Although this methodology is significantly different 
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from diffuse injury, information gathered from these studies may be used to begin to 

discern TAI-mediated secondary axotomy pathogenesis. Within one week following 

transection, axotomized facial neurons displayed swelling of the soma with peripheral 

displacement and deformation of the nucleus (Kreutzberg, 1995). These morphological 

changes are grouped under the term chromatolysis, also known as the axon reaction. In 

addition to altered morphology, axotomized neurons also undergo subcellular changes 

including peripheral nuclear displacement and loss of Nissl bodies. Nissl bodies, which 

are parallel arrays of rough endoplasmic reticulum, are either lost or much shorter than 

normal and are no longer arranged in a parallel fashion. Related extra-neuronal changes 

include glial profiles around somata and dendrites with concomitant loss of pre-synaptic 

terminals, a process known as synaptic stripping. Although the causes of these 

phenomena remain topics of debate, the favored explanation for this response following 

axotomy is the interrupted supply of trophic factors conveyed to the soma by retrograde 

transport. 

Interestingly, axotomized neurons in the PNS are capable of regenerating axons 

and achieving functional reinnervation of targets given the appropriate conditions; 

however, it is well established that CNS neurons are not able to regenerate axons 

although various experimental manipulations may create permissive environments in 

which limited neurite outgrowth is visible. Comparative studies of central and 

peripheral neuronal axotomy have revealed different as well as common responses 

(Barron, 1983; Kreutzberg, 1995). Among the factors modifying the neuronal response 

to axotomy are: the species and age of the animal; nature of the lesion (crush, 
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transection, etc.); contact with the distal stump; the type of neuron; and the proximity of 

the lesion with respect to the soma. This last factor is of particular interest to the current 

dissertation. Primary lesions applied closer to the soma result in a more rapid reactive 

response and increased cell death (Egan et al., 1977; Villegas-Perez et al., 1993). For 

example, transection of the corticospinal tract in the thoracic (McBride et al., 1989), 

cervical (Barron and Dentinger, 1979), or medullary spinal cord (Merline and Kalil, 

1990) results in delayed atrophy rather than cell death. However, lesions in the internal 

capsule, much closer to the somata, result in increased cell death relative to spinal cord 

lesions (Giehl and Tetzlaff, 1996; Bonatz et al., 2000). Similar studies using optic nerve 

and rubrospinal tract transections suggest that the distance of axotomy affects the cell 

death rate with lesions closer to the cell bodies resulting in increased cell death / loss 

(Liu et al., 2003; He et al., 2004). 

While these studies examined lesion paradigms, a landmark study by Singleton 

and colleagues explored the affects of diffuse trauma on axonal injury within the 

perisomatic domain (Singleton et al., 2002). Utilizing a rat midlinelcentral fluid 

percussion injury model of moderate severity, TAI and related axotomy was localized 

to within 40 - 60 pm of the sustaining soma. In contrast to previous transection-induced 

primary axotomy studies which generated neuronal atrophy and death, DBI-mediated 

perisomatic TAI did not result in acute neuronal death. Rather, subcellular changes 

associated with impaired protein synthesis were observed as well as evidence of 

potential somatic reorganization and repair. As early as 30 minutes following injury, 

perisomatic TAI was evident within the mediodorsal neocortex, hippocampal dentate 



www.manaraa.com

3 1 

gyms, and dorsolateral thalamus. While not the focus of the Singleton communication, 

select axonal swellings appeared continuous with their downstream segments while 

others appeared disconnected. These observations prompted the current investigation 

into the spatiotemporal and ultrastructural characterization of TAI and related axotomy 

within the perisomatic domain which is discussed in Chapter 2. 

Traumatic Axonal Injury - Wallerian Degeneration 

TAI-mediated axotomy results in loss of axonal continuity. While the axonal 

segment proximal to the site of injury and disconnection remains continuous with the 

soma, the distal segment now exists in isolation. Presumably, the proximal segment is 

sustained through its continuity with the soma; however, the distal segment degenerates 

due to loss of somatic trophic support. Degeneration of the distal axonal segment takes 

place via a process termed Wallerian degeneration, named for Augustus Waller who 

first described this phenomenon (Waller, 1850). Wallerian degeneration is a complex 

sequence of events that involves axonal degradation, reactive changes in glial cells, and 

phagocytic responses by macrophage-lineage cells (Griffin et al., 1995). It begins with 

enzymatic proteolysis of the axonal cytoskeleton and is a relatively rapid process which 

presumably clears the way (at least in the PNS) for potential axonal regeneration. 

The events of Wallerian degeneration are sequential and may be arbitrarily 

divided into stages (Griffin et al., 1995) although the overall process is a continuum of 

change meaning different stages may be observed within a given tissue section. From 

observations based on an axonal transection model, Stage 1 immediately follows 
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transection and is characterized by the apparent survival of the distal axonal segment. 

There is accumulation of intra-axonal organelles at both ends of the distal segment due 

to continued bidirectional transport. The duration of Stage 1 varies depending on 

species, length of the distal stump, temperature, and the nature and location of the axon. 

There is some question as to whether distal segments in the PNS or CNS survive longer 

following disconnection although a recent study suggests that axonal resealing 

following transection takes longer in the CNS which has implications for distal segment 

stability (Ahmed et al., 2001). Studies using a mutant (Ola) mouse with slow Wallerian 

degeneration have also provided a wealth of information concerning this degenerative 

process and will allow for continued studies of Wallerian change (Lunn et al., 1989; 

Perry et al., 1990). 

Stage 2 involves granular disintegration of the axoplasm and axonal breakdown. 

The conversion of axoplasm into fine particulate and amorphous debris represents 

cleavage products of the cytoskeleton. This change is believed to occur in an explosive 

fashion as suggested by the rarity of observing partial stages of this process. Although 

debris is the primary finding, remaining axolemma and mitochondria are also found 

within axons that have undergone cytoskeletal disintegration. It is thought that 

cytoskeletal degradation spreads distally from the site of axotomy with time (Lubinska, 

1977) and is a calcium-dependent enzymatic process (see previous section). 

Stage 3 closely follows axonal breakdown and is both similar and different 

within the peripheral and central nervous systems. During this stage, recruitment / 

activation of glial cells and macrophages takes place in both the PNS and CNS. 
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cytoskeletal degradation in the PNS while there is little blood-brain barrier breakdown 

in the CNS following degradation. In the PNS, Schwann cell responses include entry 

into the cell cycle, alteration of protein synthesis, and formation of chains of 

interdigitated cells called Bungner bands. Glial responses in the CNS include microglial 

expression of activation markers and increased glial fibrillary acidic protein (GFAP) 

expression by astrocytes. Macrophages in each nervous system express major 

histocompatibility complex (MHC) molecules. PNS macrophages are derived from the 

circulation via blood-nerve barrier breakdown while CNS macrophages appear to be 

recruited primarily from dedifferentiation of resident microglia although entry from the 

vasculature and/or perivascular locales may also contribute to observed populations. 

Macrophage origins as well as responses to DBI and its associated pathology are 

addressed in Chapter 3. 

Stage 4 represents the clearance phase during which debris is removed via 

immune cell-mediated phagocytosis and replaced by regenerating axons in the PNS or 

by fibrillary glial processes in the CNS. While PNS axons regenerate and use molecular 

cues from degraded pathways to guide their progression, CNS axons make limited 

attempts at regrowth before ultimately terminating this process. Ultimately, glial 

processes replace sites of former axons and may collectively form a glial scar which is 

hostile towards promoting CNS axonal regeneration. 

The temporal progression of Wallerian degeneration is dependent on several 

factors including species examined and anatomical location. Studies of neuronal injuries 
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in humans reveal evidence of continuing Wallerian change that persists for months to 

years post-injury as demonstrated by myelin breakdown products downstream of the 

injury site (Strich, 1968; Becerra et al., 1995; Buss et al., 2004). In lower order animals, 

Wallerian degeneration proceeds at a faster pace although the degenerative timeline 

outlined in Chapter 2 is significantly faster than those previously reported (George and 

Griffin, 1994; Pesini et al., 1999; Buss and Schwab, 2003). Wallerian change proceeds 

more quickly in the PNS than in the CNS, presumably conferring a regenerative 

advantage to PNS axonal regrowth by creating a pathway for potential regeneration 

(Griffin et al., 1995). To date, studies of Wallerian degeneration in the CNS come 

mainly from spinal cord injury models or in vitro transection of dorsal root ganglia. 

Evidence of Wallerian degeneration linked to TAI within the brain parenchyma is 

discussed in Chapter 2. 

GLIAL RESPONSE TO TRAUMATIC BRAIN INJURY: GENERAL 

INTRODUCTION 

In addition to TBI-induced neuronal damage and consequent degeneration, there 

is a corresponding glial response to brain trauma. For example, as mentioned in the 

previous section, the importance of glial cell activation in Wallerian degeneration has 

been well documented, especially within the context of axonal debris recognition and 

removal. Before addressing specific glial responses to TBI, a brief introduction of glial 

cells is provided to familiarize the reader with the various cell types within this 



www.manaraa.com

3 5 

classification. This is followed by both historical and more current reviews of microglia, 

the specific cell type which is the focus of this dissertation. (Note: A point of 

clarification is necessary prior to beginning this section. Microglia are often discussed 

in the literature together with macrophages in that following activation by an 

appropriate stimulus, microglia adopt macrophage-like qualities and for all intents and 

purposes, transform themselves into macrophages or at least, macrophage-like cells. It 

is important to distinguish these endogenous brain macrophages from peripheral blood 

monocyte-derived macrophages. Thus, in an attempt to provide clarity, this dissertation 

may refer to "microglia / macrophages" when referencing endogenous brain cells and to 

distinguish these cells from those macrophages derived from the peripheral blood.) 

Glial cells within the CNS are classified as either macroglia (e.g. 

oligodendrocytes, astrocytes, and ependymal cells) or microglia, with each cell type 

having unique form and functions. Oligodendrocytes produce myelin sheaths that 

insulate CNS axons, astrocytes have multiple functions including cytoskeletal support, 

repair following injury, and transport mechanisms while ependymal cells line the brain 

ventricles and the spinal cord central canal. While macroglia provide primarily neuronal 

support functions, microglia are responsible for CNS surveillance and subsequent 

inflammation, phagocytosis, and removal of extrinsic CNS content via activation and 

conversion to a macrophage-like phenotype. Glia differ from neurons in that they 

possess no synaptic contacts and retain the ability to divide throughout life, particularly 

in response to injury (Raine, 1999). The term "reactive gliosis" is used to describe the 

response of glial cells to neuronal tissue damage and implies, at the cellular level, that 
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glial cells react to signals that arise from injured neurons (Streit et al., 1999). While the 

glial response to traumatic injury relies on both neuronal signaling as well as intergliotic 

communication, one must focus on specific cell types to begin to discern this complex 

process. In that oligodendrocytes typically do not show reactive changes after CNS 

injury (Ludwin, 1997) and given the highly variable astrocytic responses to trauma, this 

dissertation focuses on the neuroinflammatory responses of microglia / macrophages to 

DBI and its related TAI pathogenesis. Therefore, discussion is limited to rnicroglial / 

macrophage responses with the recognition that no glial response occurs in isolation. 

Microglia: Historical and Current Knowledge 

It is important to first provide some historical context concerning microglia / 

macrophages before discussing their responses to DBI and its related pathological 

sequelae. Microglia were first identified in the late 1890's and early 1900's by a variety 

of scientists including Nissl (1899), Robertson (1900), and Alzheimer (1904) although 

their true identity was not elucidated until del Rio Hortega introduced his silver 

carbonate staining method in 1932 which allowed microglia to be distinguished from 

oligodendrocytes based on their respective structures (del Rio Hortega, 1932). Del Rio 

Hortega observed that microglial distribution throughout the brain parenchyma was 

uniform although cells were preferentially located near neurons and blood vessels. (It 

was later determined that microglia at perivascular locales were in fact macrophages 

which had entered from the peripheral blood.) 
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It was not until the 1970's that microglia were determined to have a mesodermal 

origin and invade the CNS when the vascular supply is developing during 

embryogenesis. Cammermeyer's observation of microglia within the CNS of germ-free 

rats proved that microglia were normal CNS components and not induced by brain 

injury (Cammermeyer, 1970). Since these initial observations, it has been determined 

that microglia: 1 .) are derived from circulating monocytes or precursor cells to the 

monocyte-macrophage lineage that originate in bone marrow; 2.) constitute - 10 - 20 

percent of the neuroglial population being less numerous in white than in grey matter; 

3.) share many marker antigens with circulating monocytes, down-regulating them in 

the resting state with up-regulation of their expression following an appropriate 

stimulus; 4.) are dynamic cells which display phenotypic heterogeneity ranging from 

highly ramified, small cell body resting morphology to ameboid, enlarged cell body 

activated morphology; 5.) are not the only source of brain macrophages depending on 

the nature and severity of brain injury which may allow for peripheral blood-derived 

monocytes 1 macrophages to enter the parenchyma (Barron, 1995). Unlike neurons, 

microglia are capable of proliferation. Thus, resident microglia remain within the brain 

throughout life and are the first line of defense following trauma. In response to CNS 

injury, microglia may undergo enhanced proliferation and localize to an injury site if 

presented with appropriate mitogenic and chemotactic stimuli. 

Microglia are the ubiquitous resident population of immune cells within the 

CNS parenchyma (Raivich et al., 1999). Long thought to be quiescent until stimulated 
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by an appropriate signaling molecule(s) and therefore given "resting" versus "active" 

phenotype designations, more recent studies suggest that "resting" microglia actively 

survey their extracellular environment via small projections from their cell surface 

irrespective of brain pathology (Davalos et al., 2005; Nimmerjahn et al., 2005). As 

such, resting microglia morphology is characterized by a small cell body with long, 

ramified processes: in white matter, processes are oriented parallel to the nerve fibers 

while in grey matter, they display a stellate morphology (Compston et al., 1997). In this 

resting state, microglia typically occupy non-overlapping territories approximately 30 - 

40 pm in diameter and are found evenly distributed throughout the entire parenchyma 

although subtle regional differences exist. From an ultrastructural standpoint, microglia 

typically have either an oval or elongate shaped nucleus with clumps of chromatin 

beneath the nuclear envelope and throughout the nucleoplasm. Its granular endoplasmic 

reticulum reveals cisternae which are long and narrow and often wind tortuously 

through the cytoplasm. Dense laminar bodies, homogeneous droplets, lysosomes, and 

lipofuscin are commonly encountered in the cytoplasm (Peters et al., 1991). 

The role of microglia in the CNS immune response is to recognize and remove 

pathogens as well as cellular debris, thus facilitating healing within damaged areas of 

the brain parenchyma although they also have other related functions (Kreutzberg, 

1996). In response to various types of brain pathology including neuronal damage, 

microglial activation involves stereotyped changes which include increased cell body 

size, thickened proximal processes, decreased distal branch ramification, and 

differentiation towards a more macrophage-like phenotype (Raivich et al., 1999). For 
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example, if neurons die, microglia will transform into brain macrophages and remove 

the dead cells. However, if neurons recover, active microglia may revert back to the 

resting phenotype (Streit et al., 1999). Following activation, the distinction between 

microglia and macrophage-like cell phenotype is subtle and is typically made by 

morphological appearance and expression of cell surface molecules. Resting microglia 

have a down-regulated immunophenotype adapted to the acute sensitivity of the CNS 

microenvironment (Kreutzberg, 1996); however, upon appropriate stimulation, 

microglia are actively transformed to a macrophage phenotype and express molecules 

such as major histocompatibility complex (MHC) and CD45 (leukocyte common 

antigen) on their cell surface (Berry et al., 2002). The microglial reaction to brain injury 

is graded, with more severe injury resulting in greater activation and dedifferentiation to 

macrophages. 

In studies using a facial nerve axotomy model which involves a primary lesion 

but lacks blood-brain barrier disruption, Kreutzberg and colleagues demonstrated 

microglial proliferation and ensheathment of the lesioned nerve with interposing 

processes between afferent synaptic terminals and the neuronal surface (Kreutzberg, 

1995). This phenomenon, known as synaptic stripping, is believed to confer an adaptive 

advantage in terms of neuronal reorganization following injury by allowing the injured 

neuron to recover without the additional burden of constant synaptic input. In addition 

to deafferentation of the injured neuron, ensheathment also places microglia within 

close proximity to the injured cells. This proximity may be essential for facilitating 

specific microglia - neuron interactions, such as the delivery of microglial-derived 
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trophic factors that promote neuronal survival or toxic factors leading to expedited cell 

death (Streit et al., 1999). 

There is strong evidence to support microglial - neuron interactions within the 

context of neuronal injury. It is conceivable that microglia may have dual responses to 

trauma with the nature of injury dictating the manner in which microglia interact with 

injured neurons. In a model proposed by Streit and colleagues, microglia may take a 

perineuronal position based on chemotactic signals released by injured neurons. If the 

nature of injury is reversible, signals released by the neuron may induce production of 

trophic factors by perineuronal microglia. In the event of irreversible injury, neuron- 

derived signals may cause microglia to produce neurotoxic factors that may speed 

neuronal cell death thus facilitating phagocytosis by the prepositioned microglial cell 

(Streit et al., 1999). Although close approximation between microglia and neurons is 

found in the normal CNS (Palacios, 1990; Peters et al., 1991), this proximity is 

highlighted following reactive microgliosis in response to neuronal injury. 

Microglial Responses to Traumatic Brain Injury 

Immune cell responses to focal TBI have received considerably more attention 

than those related to diffuse TBI. Focal brain injury involves related contusion and/or 

hemorrhagic-mediated tissue damage stemming from alterations of blood-brain barrier 

(BBB) permeability and/or integrity. To date, various brain trauma models with focal 

injury components, such as stab lesion, cortical contusion injury, and lateral 1 

parasagittal fluid percussion injury, have been used to elicit neuroinflammatory 
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responses. In 1976, Persson performed small stab wounds in the rat frontal lobe by 

insertion of a glass capillary or steel needle and observed neurotrophilic leukocytes, 

monocytes, and pericytes within the first post-operative week with subsequent 

phagocytosis of necrotic debris during the first two weeks (Persson, 1976). 

Interestingly, certain cells within the cavity were of intermediate morphology between 

astrocytes and oligodendrocytes, similar to the "third type of neuroglial cell" recognized 

by del Rio ~ o r t e g a  in 1932 and suggestive of microglia. Profound reactivity was 

observed in both invading hematogenous phagocytes (i.e. leukocytes and monocytes) 

and neuroglial cells suggesting microglial cell activation. Using similar injury 

methodology, Giulian and colleagues later observed activated microglia I macrophages 

within and immediately adjacent to the stab lesion within hours post-injury via 

phagocytic uptake of fluorescently labeled microspheres from the lesion (Giulian et al., 

1989). More comprehensive analyses of immune cell responses to cortical cryolesion 

injury revealed immunoreactive microglia at 1 - 3 d post-injury within the lesion rim, 

the border zone between cerebral cortex and underlying white matter, and thalamic 

nuclei (Hermann et al., 2000), indicating microglial responsiveness at the injury site as 

well as within areas remote from the primary pathology. Based on these and other 

related studies, progressive axonall Wallerian degeneration and neuronall glial cell 

death have been recognized as primary stimulants of immune cell activation and 

consequent phagocytic removal of debris (Streit et al., 1999). 

In terms of microglial responses to DBI, Carbonell and Grady provided regional 

and temporal characterization following severe lateral FPI in the mouse (Carbonell and 
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Grady, 1999). Microglial activation was consistently observed within regions of 

neuronal injury including the ipsilateral cortex, hippocampus, and thalamus by 24 hrs 

post-injury. Interestingly, the level of injury severity led to subdural hematoma 

formation in all injured animals, indicated that a significant focal injury accompanied 

the observed diffuse pathology. Other studies have demonstrated microglia 1 

macrophage activation and clustering within various axonal injury loci following 

diffuse TBI although cellular interactions at these sites were not characterized 

(Oehmichen et al., 1999; Csuka et al., 2000). Microglial clustering was observed 

infrequently while macrophage immunoreactivity was relegated to vascular and 

perivascular locales. 

Irrespective of the mechanism of injury, microglia undergo activation and 

adhesion to damaged neuronal structures ultimately transforming into macrophage-like 

phagocytic cells that remove debris. Phagocytosis is observed during the later stages of 

Wallerian degeneration via the removal of disconnected axons and myelin as well as in 

the removal of dead neurons, frequently leading to the formation of microglial nodules 

consisting of 3 - 20 microglial phagocytes (Raivich et al., 1999). 

Given the lack of information on DBI-mediated neuroinflammatory responses, 

this dissertation focuses on the microglial 1 macrophage responses to DBI within loci 

marked by TAI and uncomplicated by focal pathology such as acute neuronal cell death, 

overt contusion, and hemorrhagic-mediated tissue damage. These observations and 

subsequent discussion provided in Chapter 3 illustrate the differences between 
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neuroinflammatory responses to focal and diffuse injury and suggest that indicators of 

TBI may inadvertently overlook and thus underestimate the extent of diffuse pathology. 

STATEMENT OF PURPOSE 

In the preceding chapter, we have attempted to provide a detailed analysis of our 

current understanding of the pathobiology of TBI, particularly in the context of DAI 

which, as stated previously, is a major player in the morbidity and mortality associated 

with TBI. Our understanding of the pathogenesis of TAI has improved vastly, as has 

our understanding of its anterograde and retrograde consequences in terms of the 

ensuing neuronal somatic and Wallerian responses. Yet, many questions remain in 

relation to these anterograde and retrograde responses. For example, it appears 

counterintuitive that the perisomatic axotomy described in the diffusely injured brain 

does not result in rapid neuronal cell death that would have been anticipated based upon 

the use of experimental axonal transection paradigms. Such a fundamental difference 

suggests that the pathobiology of perisomatic axotomy versus physical transection is 

dissimilar, potentially explaining the unanticipated finding of neuronal perturbation 

without lethality. This dissertation seeks to explore this issue in the context of diffuse 

TBI. Through the use of multiple structural and tracer approaches, Chapter 2 seeks to 

explore if the rapidity of disconnection associated with perisomatic axotomy is the 

critical variable or alternatively, is it the integrity of the axolemma as it progresses 

through various phases of modification, resulting in axonal disconnection. Further, in 

that the preservation of these perisomatically injured neuronal soma would suggest a 
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non-lethal Inon-widespread immune response, Chapter 3 also directly investigates this 

issue in the context of diffuse TBI. Here, we attempt to compare and contrast the nature 

of the subsequent neuroinflammatory response triggered by diffuse injury to more 

destructive tissue tearing involved with focal injury-mediated transection. Collectively, 

the conduct of these studies seeks to provide further insight into the complex 

pathobiology associated with DAI, explaining the precise nature of perisomatic axonal 

failure, its anterograde and retrograde responses, as well as the neuroimmunological 

sequelae associated with these events. It is hoped that these findings, together with 

others emerging in the field, will help improve our understanding of patients sustaining 

DAI and their ultimate therapeutic management. 
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TRAUMATIC AXONAL INJURY IN THE PERISOMATIC DOMAIN TRIGGERS 

ULTRARAPID SECONDARY AXOTOMY AND WALLERIAN DEGENERATION 

Introduction 

Traumatic brain injury (TBI) remains a leading cause of death and disability, 

especially in children and young adults (Sosin et al., 1995; Kraus et al., 1996; Langlois 

et al., 2004). Within this context, diffuse brain injury (DBI) occurs via rapid cranial 

acceleration-deceleration with or without impact and generates little overt pathology in 

comparison to focal lesions (Adams, 1992; Meythaler et al., 2001; Hardman and 

Manoukian, 2002). A significant component of DBI is diffuse axonal injury (DAI) 

which contributes to the associated morbidity and mortality (Christman et al., 1994; 

Graham et al., 2002). Traumatic axonal injury (TAI), the experimental counterpart of 

DAI, is characterized microscopically by focal impairment of axonal transport leading 

to progressive axonal swelling and disconnection over several hours post-injury 

(secondary axotomy) due to cytoskeletal misalignment and collapse via neurofilament 

compaction, microtubule loss, and disruption of the subaxolemmal spectrin network 

(Povlishock, 1992; Pettus and Povlishock, 1996; Povlishock and Pettus, 1996; 

Okonkwo et al., 1998). Proposed mechanisms of moderate to severe TAI pathogenesis 
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include traumatically induced transient perturbation of the axonal membrane allowing 

for massive calcium influx which stimulates pathological cascades targeting the axonal 

cytoskeleton for degradation (Povlishock and Pettus, 1996; Buki et al., 1999; Buki et 

al., 2000). 

Although considerable information has been generated concerning TAI and its 

pathogenesis, particularly in long tract axons of the brainstem, it has been difficult to 

evaluate the consequences of TAI in terms of the related neuronal somatic fate that also 

must contribute to any ensuing traumatically induced morbidity. To better explore this 

issue, our laboratory recently utilized a midlinelcentral fluid percussion injury (cFPI) 

model to study the neuronal somatic response to DBI-mediated axotomy that occurred 

in the perisomatic domain (Singleton et al., 2002). Using this model, perisomatic 

axotomized fibers were localized to within 40 - 60 pm of the sustaining somata and 

were found within distinct anatomical loci, namely the neocortex, hippocampus, and 

thalamus. Contrary to expectations based on the existing literature of experimental 

transection-induced primary axotomy (Barron, 1983; Kreutzberg, 1995), perisomatic 

traumatic axotomy did not result in acute neuronal cell death. Rather the related somata 

revealed impaired protein synthesis followed by neuronal cell reorganization and repair 

(Singleton et al., 2002). Based on these unanticipated, non-lethal neuronal responses, 

we questioned whether the structural and related subcellular changes associated with 

perisomatic TAI significantly differed from those TAI changes previously described 

within brainstem fiber tracts. To this end, we followed the course of this perisomatic 

axotomy, focusing on its occurrence in discrete nuclei within the thalamus. 
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Recognizing that axotomy within the long tract axons of the brainstem is 

typically associated with impaired axonal transport and altered axolemmal permeability 

(Pettus et al., 1994; Stone et al., 2004), we used immunocytochemical light and electron 

microscopy as well as confocal microscopy with antibodies to P-amyloid precursor 

protein (APP), a marker of impaired axonal transport, as well as extracellular tracers 

(fluorescently-conjugated 10 kDa dextrans) normally excluded from intact axons to 

critically evaluate the spatiotemporal and ultrastructural features of perisomatic TAI 

following moderate cFPI. Routine LM analysis offered insight into the temporal course 

of perisomatic axonal injury progression while EM semi-serial image reconstruction 

permitted the characterization of the axonal subcellular responses at the site of injury in 

addition to those proximal - distal changes ongoing in the axon cylinder. Parallel 

confocal microscopy was used to explore post-injury alterations of axolemmal 

permeability and its relation to focal APP accumulation at the axotomy site. Contrary to 

expectations, these approaches demonstrated that the thalamic perisomatic TAI was 

associated with an ultra-rapid axotomy followed by rapid initiation of Wallerian 

degeneration. Further, despite the rapidity of this axotomy, this event was not 

accompanied by overt alterations in axolemmal permeability. 

Materials and Methods 

Animal preparation and injury 

To follow the pathogenesis of thalamic perisomatic TAI, animals were subjected 

to moderate cFPI consistent with methods described previously (Dixon et al., 1987; 



www.manaraa.com

48 

Singleton et al., 2002). Adult male Sprague Dawley rats (375 - 400 gm) were 

anesthetized with 4% isoflurane in 70% N 2 0  and 30% 02, intubated, and maintained on 

a ventilator with 1-2% isoflurane for injury preparation. Intubated animals were placed 

on a heating pad connected to a thermostat controlled by a rectal probe (Harvard 

Apparatus, Holliston, MA) to maintain 37OC body temperature. To prepare the animal 

for cFPI, the top portion of a Leur-Loc syringe hub of a 20 gauge needle, two fixation 

screws, and dental acrylic were fixed to a midline craniotomy in the skull over the intact 

dura and then connected to the injury device. Briefly, a 4.8mm circular craniotomy 

along the sagittal suture midway between bregma and lambda was generated taking care 

not to disrupt the underlying dura and superior sagittal sinus. The top portion of the 

Leur-Loc hub (Becton Dickinson, Franklin Lakes, NJ) was cut away from the 20 gauge 

needle, beveled, scored, and affixed over the craniotomy site using cyanoacrylate. After 

confirming the integrity of the seal between the hub and the skull, fixation screws were 

inserted into lmm holes drilled into the right frontal and occipital bones. Dental acrylic 

(Hygenic Corp., Akron, OH) was applied around the hub and over the screws and 

allowed to harden to provide stability during the injury induction. After the dental 

acrylic hardened, the skin was closed over the hub with sutures, topical Lidocaine 

ointment was applied, and the animal was removed from anesthesia and monitored in a 

warmed cage until fully recovered (- 1 hr). 

Prior to injury, the animal was again anesthetized with isoflurane. The incision 

was quickly opened and the male end of a spacing tube was inserted into the Leur-Loc 

hub. The female end of the spacer-hub assembly, filled with normal saline, was then 
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inserted onto the male end of the fluid percussion device, ensuring that no air bubbles 

were introduced into the system. A - 2.1 atmosphere (1.9 - 2.3 atm) injury was 

administered, consistent with brain injury of moderate severity (Dixon et al., 1987). 

Injury preparation and induction were completed prior to the animal's recovery from 

anesthesia. Following injury, the spacer-hub assembly was immediately removed en 

bloc, bleeding was controlled with Gelfoam (Parmacia, Kalamazoo, MI), and the 

incision was closed with sutures. Animals were monitored for spontaneous respiration 

and, if necessary, ventilated with room air to ensure adequate post-injury oxygenation. 

Post-injury recovery times for the following reflexes were recorded: toe pinch, tail 

pinch, corneal blink, pinnal, and righting. Following recovery of the righting reflex, 

animals were placed in a holding cage with a heating pad to ensure maintenance of 

normothermia and monitored until the appropriate perfusion time. For sham-injured 

control animals, the above steps were followed without injury induction. All injured 

animals had righting reflex recovery times greater than 6 min compared to less than 2 

min for sham-injured animals (data not shown). Experiments were conducted in 

accordance with NIH and institutional guidelines concerning the care and use of 

laboratory animals (IACUC). 

Tissue preparation 

Animals (n = 5 / injury group and 2 1 sham-injury group) were euthanized at t = 

15,30,60, 180 rnin post-injury via an overdose of sodium pentobarbital IP (150 mglkg) 

and transcardially perfused with 4% paraformaldehyde / 0.1 % glutaraldehyde in 
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Millonig's buffer for immunocytochemistry. Following perfusion, brains were removed 

and blocked in a coronal blocking device to include the thalamus with overlying 

neocortex and hippocampus. The blocked region was then re-immersed in the same 

fixative for 24 hours. Following postfixation, the blocked region was flat-mounted on a 

metal plate with cyanoacrylate, embedded in agar, and sectioned in O.1M phosphate 

buffer at a thickness of 40 pm using a vibrotome (Leica Microsystems, Bannockburn, 

IL). Serial coronal sections (n = 60 sections at 40 pm 1 section) were collected starting 

from 1600 pm caudal to the anterior commissure. Additionally, select blocked brains 

were bisected along the midline, flat-mounted, and sectioned through the sagittal plane. 

These sampling strategies allowed for a comprehensive examination of the thalamus 

based on stereotactic coordinates relative to the anterior commissure (Paxinos and 

Watson, 1986). Systematic uniform random sampling of coronal sections was employed 

with every fifth section collected for a total of twelve sections per animal. Additional 

tissue was stored in Millonig's buffer in 12-well culture plates (Falcon, Newark, DE). 

Immunocytochemistry for light microscopy 

Sections were processed with APP antibody to permit visualization of thalamic 

perisomatic TAI and its spatiotemporal and ultrastructural characterization. Intra-axonal 

APP moves via anterograde transport and pools at sites of impaired axonal transport, 

thus serving as a marker of TAI (Stone et al., 2000). Sections were processed for APP 

irnrnunoreactivity using an established protocol including modified microwave antigen 

retrieval described previously (Stone et al., 1999).(Stone et al., 2000) Briefly, 



www.manaraa.com

5 1 

endogenous peroxidase activity within the tissue was first blocked with 0.3% H202 in 

PBS for 30 min. Sections were then processed using the temperature-controlled 

microwave antigen retrieval approach, preincubated for 60 min in 10% normal goat 

serum (NGS) with 0.2% Triton X-100 in PBS, and incubated overnight with C-terminus 

specific APP (1: 1500; rabbit anti-C-APP; Zymed, San Francisco, CA) primary antibody 

in 1% NGS in PBS. Sections were then incubated for 1 hr with biotinylated rat- 

absorbed goat anti-rabbit IgG secondary antibody (1 :200 Vector, Burlington, CA) 

diluted in 1 % NGS in PBS. Sections were visualized via incubation in avidin- 

horseradish peroxidase complex (Vectastain ABC Standard Elite Kit; Vector) for 1 hr 

followed by 0.05% diaminobenzidine, 0.01% H202, and 0.3% imidazole in 0.1M 

phosphate buffer for 10-20 min. Sections for light microscopic analysis were mounted 

on gelatin-coated slides, dehydrated, and coverslipped while additional sections 

underwent continued processing for EM. As an internal control, additional sections 

were processed as described above; however, primary antibody was omitted from the 

procedure. Images were captured using an Eclipse 800 microscope (Nikon, Tokyo, 

Japan) fitted with a Spot-RT digital camera (Diagnostic Instruments, Sterling Heights, 

MI). 

Immunoelectron microscopy 

Following LM processing, select sections were further processed for EM 

analysis to ascertain related ultrastructural pathology. Following processing for APP 

antibody, tissue was osmicated in 1% Os04 and then placed in graded alcohols and 
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propylene oxide prior to placement in epoxy resin (Ted Pella, Redding, CA). Sections 

were then embedded between plastic slides (Thomas Scientific Co., Swedesboro, NJ), 

placed in 55OC oven for 3 days, and then scanned to identify immunoreactive axonal 

swellings in continuity with their sustaining somata. Once identified, these sites were 

removed, mounted onto plastic studs, and thick sectioned to the depth of interest using 

an ultramicrotome (Leica Ultracut R; Wien, Austria). Semithin sections (1 pm) stained 

with 1% Toluidine Blue were screened for evidence of perisomatic TAI and Wallerian 

degeneration. Serial thin sections (70 nm) were then cut, picked up onto Formvar- 

coated slotted grids, and stained in 5% uranyl acetate in 50% methanol for 2 min. and 

0.5% lead citrate for 1 min. The length and non-linear path taken by many thalamic 

axons required reconstruction of semi-serial sections in order to examine the complete 

axonal cylinder including the swelling site and proximal - distal axonal segments. 

Images were captured using a JOEL 1230 electron microscope using either negative 

film (Kodak, Rochester, NY) or digital camera (Gatan Digital Micrograph, Pleasanton, 

CA) and were imported into Adobe Photoshop (Adobe Systems, San Jose, CA) prior to 

publication to allow for thin section reconstruction. 

Tracer studies and double-label immunojluorescence for confocal microscopy 

To determine the potential for focal alterations of axolemmal permeability 

reminiscent of those described in the brainstem following injury as well as the potential 

co-localization of altered permeability with impaired axonal transport and APP 

accumulation, another population of animals (n = 3 / injury group and 2 / sham-injured 
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group) received stereotactic injections of Alexa 488-conjugated lOkDa dextran (80 pl at 

20 mglml) into the lateral ventricle prior to injury. Dextran was infused (Microinjection 

Pump; Bioanalytical Systems, West Lafayette, IN) at a rate (2 pllmin) previously 

recognized in our laboratory to maintain normal intracranial pressure. Tracer circulated 

within the brain parenchyma for 3 hrs prior to injury induction. At t = 15, 30,60, and 

180 min post-injury, animals were perfused with 4% paraformaldehyde and sections 

were processed for APP immunocytochemistry as described previously. However, goat 

anti-rabbit Alexa 594 secondary antibody (1: 1000; Molecular Probes, Eugene, OR) was 

used to allow for simultaneous visualization of dextran and APP immunofluorescence. 

Sections were mounted with an anti-fade aqueous mounting media (ProLong; Molecular 

Probes, Eugene, OR) onto glass slides, coverslipped, and sealed with nail polish. 

Images were captured using a confocal microscope (Leica TCS-SP2 AOBS; Leica 

Microsystems, Bannockburn, IL) with appropriate excitation lasers, detectors, and 

analysis software. 

Axonal swelling measurements and statistical analysis 

Axonal swelling diameter at each post-injury time point was quantified using 

systematic random sampling within the thalamus. Using computer-assisted counting 

software (CAST; Olympus, Copenhagen, Denmark) the thalamus was first outlined 

bilaterally at low power (2X) after which a high power (100X with oil) objective was 

used to count axonal swelling diameters at randomly assigned locations within the 

defined thalamic region. Counts (n = 35) were obtained from a single animal at each 
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time point using coronal tissue sections taken from comparable stereotactic coordinates 

(approximately -3.60 mm relative to bregma) (Paxinos and Watson, 1986). Perisomatic 

swellings or swellings in isolation were identified by APP immunoreactivity and 

diameters were quantified at the maximal distance across the swelling by first focusing 

through the z axis and then measuring the distance using a calibrated measuring tool. 

Data were reported as mean + standard deviation and were analyzed using Welch 

ANOVA and Tukey's HSD post-hoc. In addition to swelling diameter quantification, 

swelling frequency versus diameter for the 15, 30, and 60 min post-injury time points 

were plotted to provide additional insight into the temporal pattern of swelling 

development. 

Results 

Sham-injury - Generalfindings 

Macroscopically, sham-injured brains showed no evidence of compression, 

contusion, or tissue loss. Tissue sections from sham-injured animals processed with 

APP antibody and examined at the LM level demonstrated limited background staining 

with the finding of only isolated immunoreactive somata. However, there was no 

evidence of immunoreactive axons or swellings adjacent to these somata (data not 

shown). 
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Injury - LMfindings 

The injured brains shared identical macroscopic features with sham-injured 

brains with the exception of limited subarachnoid hemorrhage underlying the 

craniotomy site and petechial hemorrhages within the corpus callosum. In tissue 

sections, APP immunoreactive perisomatic thalamic axonal swellings were visible at all 

post-injury time points. In addition to thalamic swellings, comparable perisomatic 

axonal changes were found in the lateral neocortex and hippocampus, with other 

swellings found scattered in the corpus callosum, subcortical white matter, and 

brainstem. These findings were consistent with previous observations (Singleton et al., 

2002); however, they were not the focus of the current communication that centered 

exclusively on thalamic change. Fifteen minutes post-injury, APP immunoreactive 

axons were visible within thalamic nuclei, with most concentrated in the dorsolateral 

(DL) quadrant. These axons revealed focal swellings reflected in the localized increase 

of their relative axonal diameter. The swellings were within 40 - 60 pm of their somata 

of origin and many were continuous with axonal immunoreactivity in both proximal and 

distal directions, consistent with the maintenance of axonal continuity (Figs. 2-lA&B). 

In contrast to these continuous irnrnunoreactive axonal profiles, other immunoreactive 

perisomatic axonal swellings demonstrated no association with any immunoreactivity 

distal to the swelling, suggesting axonal disconnection. Swelling diameter at 15 min 

post-injury was 1.96 k 0.36 pm (mean k SD). By 30 min post-injury, imrnunoreactive 

axonal swellings were now observed in the ventral posteriomedial (VPM) and 

posteriolateral (VPL) nuclei together with the DL quadrant. These swellings were 
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Fig. 2-1. The low magnification microphotograph is provided only to orient the reader 
to the dorsolateral thalamic locus (rectangle) in which perisomatic TAI is found. Higher 
magnifications of this region at sequential post-injury time points demonstrate the 
progression of perisomatic TAI via APP immunoreactivity. At 15 min post-injury 
(A&B), immunoreactive axonal segments proximal and distal to swellings (arrowheads) 
suggest axonal continuity despite focal impairment of axonal transport. Note that the 
proximal segment immunoreactivity can be traced back to the corresponding soma of 
origin. At 30 min post-injury (C), the focal axonal diameter at swelling sites 
(arrowheads) is increased. The upper neuronal profile shows immunoreactivity distal to 
the swelling while the lower profile lacks distal immunoreactivity, suggestive of axonal 
disconnection. Note that by 60 min post-injury (D), most immunoreactive swellings 
have lost distal immunoreactivity and that the focal axonal swellings (arrowheads) now 
take on a rounded appearance. (Scale bar = 10 ym) 
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similar to those seen at 15 min; however, they were increased in diameter (2.63 + 0.41 

pm) and as such, were more intensely immunoreactive, consistent with continued 

delivery of APP via anterograde transport. Although quantitative assessments were not 

performed, there appeared to be increased numbers of these reactive swellings 

compared to 15 min post-injury. Isolated immunoreactive axonal swellings revealed 

continuity between the proximal and distal imrnunoreactive axonal segments; however, 

the majority of immunoreactive axonal swellings at this time point demonstrated 

continuity only with their proximal segments, without any evidence of downstream 

axonal immunoreactivity (Fig. 2-IC). This observation was consistent with the premise 

that these axonal swellings had become detached from their downstream segments. At 

60 - 180 min, the above described thalarnic nuclei continued to demonstrate axonal 

swellings that had expanded in diameter from 4.41 ? 0.87 pm at 60 min to 4.20 + 0.78 

pm at 180 min. In this time interval, most axons with reactive swellings showed no 

evidence of distal immunoreactivity consistent with complete axotomy and 

disconnection (Fig. 2- ID). 

Statistical analysis and progression of axonal swelling diameter 

Statistical analysis of swelling diameter within each group showed a normal 

distribution with unequal variances. Therefore, axonal swelling diameter measurements 

from comparable thalamic regions for each of the four survival groups (15, 30,60, and 

180 min post-injury) were compared using Welch ANOVA and found to be 

significantly different (F(3,74) = 139.4, p value < 0.0001). Using Tukey's HSD post- 
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hoc analysis, a progressive increase in swelling diameter over time post-injury was 

confirmed. At 60 - 180 min post-injury, swelling diameter (4.41 k 0.87 pm and 4.20 k 

0.78 pm respectively) was greater than at 30 min (2.63 k 0.41 pm) which, in turn, was 

greater than at 15 min (1.96 k 0.36 pm). There was no significant difference between 

swelling diameters at 60 and 180 min. The rapidity of axonal swelling was highlighted 

by an approximate doubling in diameter when 15 and 60 min mean swelling diameters 

were compared: 1.96 versus 4.41 pm respectively. To examine axonal swelling 

progression, swelling frequency versus diameter was plotted as a function of time post- 

injury (Fig. 2-2). Swelling diameter showed a tendency to cluster at all time points and 

increased as time post-injury increased. Similarly, axonal swellings appeared to expand 

to a maximal diameter given the comparable mean diameter values at 60 and 180 min 

post-injury. 

EM findings 

EM observations confirmed and supplemented those findings described at the 

LM level. Specifically, as early as 15 - 30 min post-injury, a similar progression of 

change was seen in all thalamic nuclei assessed. At these time points, focal axonal 

swellings in continuity with their proximal and distal segments were seen, consistent 

with LM observations. These swellings showed an intact yet expanded axolemma that 

encompassed an organelle-laden mass composed primarily of mitochondria along with 

smooth endoplasmic reticulum (SER) and vesicles, both containing immunoreactive / 

electron-dense APP. Proximal to the swelling, the axonal cylinder appeared 
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Fig. 2-2. Graph of swelling frequency versus swelling diameter (pm) as a function of 
time post-injury. Trend lines indicate swelling clustering by diameter as a function of 
time post-injury. Mean diameter values demonstrate a statistically significant increase 
over time. Note the relatively modest number of small swellings at 60 min post-injury 
indicating minimal de novo swelling development in the later phases of injury. This data 
suggests that perisomatic TAI occurs in the acute post-injury timeframe and that there is 
an approximate doubling in swelling diameter within the first hour for those fibers 
injured during the acute timeframe. (Note: 180 min data has been omitted for 
simplicity) 
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unremarkable showing normal axonal detail, while the related soma revealed no overt 

subcellular changes. Similarly, the related distal axonal segment also appeared 

morphologically normal. Of note was the fact that these perisomatic swellings typically 

occurred just prior to the initiation of the myelin sheath although infrequently a myelin 

investment was identified, consistent with involvement of the first internodal segment. 

In contrast to these isolated continuous / non-axotomized fibers, many of the axonal 

swellings seen at these time points demonstrated frank disconnection (Figs. 2-3 - 2-4). 

This axonal disconnection, suggested at the LM level by the loss of immunoreactivity 

distal to the swelling, was confirmed at the EM level via the loss of axonal continuity 

distal to the site of axonal swelling. Consistent with LM findings, perisomatic swellings 

were expanded containing numerous APP-laden vesicular profiles and abundant 

mitochondria consistent with their continued delivery via anterograde axonal transport. 

The related somata again appeared unremarkable. Although the proximal segment 

between the soma and the swelling appeared structurally intact, some evidence of initial 

change was reflected in the finding that many of the mitochondria within this axonal 

segment were dilated. This was particularly so for those mitochondria approximating 

the axonal segment immediately adjacent to the swelling (Fig. 2-3A). The swellings 

themselves were surrounded by a continuous axolemma that encompassed a pool of 

immunoreactive vesicles as well as mitochondria capping aggregated and disorientated 

neurofilaments and microtubules (Fig. 2-4B). Immediately distal to the swelling, no 

axonal continuity could be observed even when the sections were followed in semi- 

serial order. Typically when downstream segments were identified via semi-serial 
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Fig. 2-3. This micrograph reveals a reactive axonal swelling with corresponding 
proximal and distal segments 30 min post-injury (Bar = 5 pm). In rectangle A of Fig. 3, 
separation of myelin lamellae can be seen within the proximal segment. Note that the 
myelin sheath remains intact until just prior to the swelling. This segment, enlarged in 
panel 3A, contains mitochondria demonstrating normal structural detail (single 
arrowheads) as well as pathological swelling (double arrowheads). Linear 
neurofilaments and microtubules are observed until the area of mitochondria1 pathology 
at which point their orientation becomes disorganized. Swelling characteristics include 
edema and loss of myelin 1 axonal ultrastructure. Granular electron-dense precipitate at 
the site of the swelling is consistent with the pooling of APP immunoreactive vesicles 
via impaired axonal transport. Axotomy is confirmed via loss of axonal ultrastructure 
immediately distal to the swelling. Note that despite axonal disconnection, the distal 
segment, seen in rectangle B of Fig. 2-3 and enlarged in panel 3B, remains 
ultrastructurally intact with normal-appearing axonal morphology. (Bar = 2 pm) 
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Fig. 2-4. This micrograph illustrates a reactive axonal swelling and proximal segment 
ultrastructure 15 min post-injury (Bar = 2 pm). Proximal segment ultrastructure, shown 
in panel 4A corresponding to rectangle A in Fig. 2-4, appears morphologically normal 
with linear neurofilaments along the longitudinal axis, together with microtubules and 
compact, elongated mitochondria within an intact unmyelinated axolemma. Within this 
segment, electron-dense APP immunoreactivity (arrowhead) can be seen within 
scattered vesicles. In panel 4B corresponding to rectangle B in Fig. 2-4, swelling 
ultrastructure is characterized by neurofilamentous disorganization (asterisks), 
microtubule loss, and pooling of mitochondria. Within the swelling, the pooling of APP 
immunoreactive vesicles (arrowheads) is consistent with an impairment of axonal 
transport at this site. (Bar = 1 pm) 
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section analysis, they were found up to 5 pm beyond the site of axotomy and axonal 

swelling. Despite disconnection from their proximal segments, the tips of these distal 

axonal segments were sealed by a continuous axolemma, with no evidence of structural 

change. The distal segments appeared morphologically normal and contained an intact 

cytoskeleton and organelles that included linear arrays of neurofilaments, microtubules, 

and compact mitochondria within a well-defined axolemma (Fig. 2-3B). Axonal 

swellings were seen at initial segments (Fig. 2-4), prior to initiation of the myelin 

sheath, as well as within internodal segments (Fig. 2-3) approximating the somata of 

origin as identified by myelin investment. Although quantitative studies were not 

performed, swollen profiles were more commonly observed at the initial segment as 

compared to the internodal segment. Remarkably, despite these processes of axonal 

injury, swelling, and disconnection, the related brain parenchyma appeared unaltered. 

The reactive changes occurring in the perisomatic axonal swelling and its disconnected 

segment were not associated with local tissue tearing, overt structural damage, or 

intrinsic vasculature disruption (Figs. 2-3 - 2-4). 

By 60 - 180 min post-injury, the proximal axonal segment and related soma 

remained morphologically intact, while axonal swellings demonstrated continued 

cytoskeletal pathology, organelle accumulation, and axolemmal expansion (Fig. 2-5 - 

2-7). The majority of axonal swellings now visualized were encompassed by a 

continuous axolemma, with no evidence of downstream axonal continuity. Only 

isolated swellings were found continuous with their distal segments which now were 

devoid of organelles and contained amorphous debris suggestive of the initial stages of 
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Fig. 2-5. Evidence of axonal disconnection and anterograde 1 Wallerian degeneration is 
seen at 60 min post-injury (Bar = 2 pm). In Fig. 2-5, the myelinated proximal segment, 
seen in rectangle A, demonstrates normal morphology similar to injured axons at earlier 
post-injury time points. The swelling, enlarged in panel 5A from rectangle A in Fig. 2- 
5, reveals edema and loss of axonal constituents although the overlying myelin sheath 
remains intact and continuous with the proximal portion of the myelin sheath. Note that 
local glial swelling and perivascular edema within the adjacent parenchyma can be 
seen. Axonal disconnection is confirmed by the finding of myelinated, APP 
irnrnunoreactive, edematous debris immediately distal to the swelling as seen in 
rectangles B&C. The debris, enlarged in panels 5B&C, reveal axonal fragmentation and 
vacuolization. Note the amorphous precipitate in an axoplasm devoid of organelles that 
is bounded by a continuous axolemma. The more distal segment, enlarged in panel 5D 
from rectangle D, reveals return of normal axonal ultrastructural detail including linear 
neurofilaments and compact mitochondria within an intact axolemma. (Bar = 1 pm) 
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Fig. 2-6. The atypical finding of maintained axonal continuity at 180 min post-injury is 
shown in this micrograph (Bar = 5 pm) which also reveals an example of internodal 
involvement in the process of axonal injury. Note the presence of a swelling (asterisk) 
that is continuous with both the proximal and distal axonal segments, encompassed by a 
thinned, yet continuous, myelin sheath. Also note that the myelinated, proximal axonal 
segment ultrastructure remains normal until immediately prior to the swelling. At the 
intersection of the proximal segment and related swelling enlarged in panel 6A from 
rectangle A in Fig. 2-6, linear neurofilaments and microtubules enter the swelling at 
which point their orientation becomes disorganized. Further progression into the 
swelling, enlarged in panel B from rectangle B, reveals neurofilament disorganization 
(box within panel B) encompassing both normal and pathologically swollen 
(arrowhead) mitochondria. Pooling of axoplasmic organelles and electron-dense APP 
immunoreactive vesicles (double arrowhead) is consistent with impaired axonal 
transport. The distal (although not disconnected) segment shows loss of axoplasmic 
constituents and amorphous precipitate although portions of the myelin sheath remain 
intact. These changes appear consistent with the onset of Wallerian degeneration. (Bar = 
1 ~ m )  
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Fig. 2-7. In contrast to Fig. 2-6, Fig. 2-7 shows evidence of disconnection. Note that in 
Fig. 2-7, the sustaining soma (N) can be seen in continuity with the proximal axonal 
segment which is enlarged in panel 7A from rectangle A. The axonal swelling and 
disconnection enlarged in panel 7B from rectangle B shows evidence of downstream 
Wallerian change seen in panel 7C enlarged from rectangle C (Bar = 5 pm). Note that 
the initial segment (panel 7A) ultrastructure seen in continuity with its sustaining soma 
appears morphologically normal although periaxonal edema is present. Within this 
segment, electron-dense APP immunoreactive vesicles are evident (arrowheads). At the 
swelling (panel 7B), impaired axonal transport is marked by loss of neurofilament 
linearity and microtubules along with pooling of immunoreactive vesicles (arrowheads). 
Immediately distal to the site of swelling and disconnection, myelinated axonal debris 
(panel 7C) is seen. Within this disconnected segment, granular amorphous content is 
seen within the myelinated axonal cylinder. (Panel A&B Bar = 1 pm; Panel C Bar = 2 
pm> 
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Wallerian change (Fig. 2-6). In contrast to earlier time points, all distal disconnected 

axonal segments now displayed evidence of pathological change that included axonal 

fragmentation and vacuolization together with myelin disruption and separation, 

pathologies consistent with Wallerian degeneration (Fig. 2-5B&C). The most distal 

portions that could be identified revealed the loss of their intra-axonal components with 

electron-dense amorphous precipitate observed within intact axonal cylinders (Fig. 2- 

7C). These events again occurred at the initial axonal segment although infrequent 

internodal involvement was also recognized. As in earlier time points, these processes 

occurred without evidence of tissue tearing; however, these perisomatic axonal changes 

were now associated with local glial swelling and perivascular edema (Fig. 2-5). 

Tracer studies 

As noted, an extracellular tracer was used to assess the potential for 

traumatically induced axolemmal failure as a prelude to swelling development and 

axotomy. Additionally, following axonal disconnection, the tracer also provided the 

added advantage of offering insight into the process of axonal disconnection and 

potential membrane resealing. To explore these issues, confocal microscopy was 

employed to examine fluorescently-conjugated 10 kDa dextran co-localized with APP 

immunofluorescence. 

In sham-injured tissue, APP immunofluorescence was identical to that described 

by routine enzyme-linked LM immunohistochemistry. Limited somatic 

irnmunofluorescence was observed with no evidence of immunoreactive axonal 
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swellings. Following tracer administration, its diffusion throughout the parenchyma and 

perivascular sleeves of the thalamus was apparent; however, there were no signs of 

local axonal or neuronal uptake (Fig. 2-8A). In injured tissue, APP immunofluorescence 

was consistent with characteristics of perisomatic TAI. As with our previous 

observations, select swellings were found within continuous axons while others 

appeared disconnected from their distal segments. Despite the dispersion of tracer 

throughout the thalamic parenchyma prior to injury, no axonal tracer uptake was 

observed at any post-injury time point. Further, there was no co-localization of tracer 

and APP immunofluorescence at sites of axotomy identified by APP positive axonal 

swellings lacking distal irnmunofluorescence (Fig. 2-8B). These findings suggested that 

perisomatic TAI pathogenesis occurred not only independent of overt alterations of 

axolemmal permeability but also that rapid axolemmal resealing or disconnection with 

membrane closure occurred with axotomy. Consistent with previous reports from our 

laboratory (Singleton and Povlishock, 2004), isolated somatic flooding was observed 

following injury; however, this somatic flooding was consistently independent of 

perisomatic TAI pathology with the caveat that the tracer entered these neuronal somata 

via defects in their plasmalemmae. 

Discussion 

The results of this communication reveal, for the first time, the pathogenesis of 

DBI-mediated perisomatic TAI with concomitant secondary axotomy and Wallerian 

degeneration following moderate cFPI. Using a well-documented antibody marker of 
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Fig. 2-8. This confocal microscopic image illustrates that thalamic perisomatic TAI 
occurs independently of overt alterations in axolemmal permeability. At 180 min post- 
injury, panel 8A is from a sham-injured animal receiving pre-injury extracellular tracer. 
Note that the 10 kDa dextran (green) can be seen within the perivascular sleeves 
(arrowheads) and surrounding parenchyma, while the APP immunoreactivity (red) is 
limited to neuronal somata. In panel 8B, a perisomatic axonal swelling (double 
arrowhead) can be traced to its sustaining soma. Swellings (double and triple 
arrowheads) are surrounded by, but independent of, somatic flooding (single 
arrowheads). Lack of dextran - APP co-localization at the site of swelling and 
disconnection suggests either axolemmal sealing prior to disconnection or ultra-rapid 
membrane resealing following axotomy. (Bar = 40 pm) 
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impaired axonal transport (Stone et al., 2000), secondary axotomy and disconnection at 

the site of injury were seen within the thalamus as early as 15 min post-injury, without 

evidence of axonal tearing or related parenchymal disruption. Wallerian change 

associated with the loss of axoplasmic constituents and ultrastructural integrity occurred 

within the axonal segment distal to the site of disconnection by 60 - 180 min and was 

accompanied by evidence of local edema and reactive glial change. The parallel 

exclusion of 10 kDa dextrans from the site of this progressive axonal response to injury 

demonstrated that perisomatic TAI was not accompanied by overt alterations in 

axolemmal permeability. Analysis of the temporal progression of perisomatic TAI 

revealed an increase in axonal swelling diameter over time with the suggestion of a 

maximal swelling diameter at 60 - 180 min post-injury. Additionally, the finding of 

modest numbers of small swellings at 60 min post-injury indicated that few de novo 

axonal swellings occurred in the later phases of injury. Taken together, these findings 

indicate that axonal injury, swelling, and detachment occur rapidly following traumatic 

insult and that this progressive change occurs only within those fibers injured at the 

moment of traumatic injury without delayed recruitment via secondary injury 

mechanisms. 

While others have explored TAI within the thalamus following parasagittal FPI, 

these evaluations were initiated at 24 hrs post-injury in contrast to the much earlier 

evaluations reported here (Bramlett et al., 1997). Further, previous studies from our 

laboratory also demonstrated the occurrence of bilateral perisomatic TAI in the 

thalamus following cFPI (Singleton et al., 2002). Yet, these studies neither evaluated 
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the spatiotemporal progression of the TAI nor examined the related axonal 

ultrastructural responses andlor any related axolemmal permeability change. It was 

assumed that the repertoire of injury-induced change occurring within these perisomatic 

axonal domains paralleled that previously described in the brainstem wherein focal 

altered axolemmal permeability, neurofilament misalignment and compaction, 

microtubule loss, mitochondria1 swelling, and secondary axotomy typically took place 

over several hours post-injury (Pettus et al., 1994; Pettus and Povlishock, 1996). While 

components of perisomatic TAI pathobiology parallel brainstem TAI in terms of 

neurofilament / microtubule pathology and focal impairment of axonal transport 

reflected in organelle and mitochondria1 pooling, several aspects of perisomatic TAI 

pathogenesis appear unique. 

While the initiating processes of TAI-related pathology have been documented 

as early as 5 - 30 min following injury, its progression to disconnection in brainstem 

axons has been typically described over a several hour period (Pettus et al., 1994; 

Povlishock et al., 1997; Maxwell and Graham, 1997; Maxwell et al., 1999). However, 

this timeframe within brainstem axons was not comparable to that seen within thalamic 

perisomatic TAI wherein the ultra-rapid progression of axonal swelling and 

disconnection represent an unexpected and novel finding. The reason for these 

differences between perisomatic and long tract brainstem fibers is unclear; however, it 

may be related to multiple factors. In contrast to brainstem TAI that is found primarily 

within the major ascending and descending white matter tracts remote from their cell 

bodies of origin, perisomatic TAI is found at the gray-white matter interface within the 



www.manaraa.com

80 

neocortex and thalamus, areas subjected to increased shearing during trauma, rendering 

this locus selectively vulnerable to axonal injury (Smith et al., 1997; Meythaler et al., 

2001). Of additional relevance, the perisomatic injury typically occurred at or near the 

initial segment of the axon prior to the initiation of the myelin sheath (Conradi, 1969). 

Here the axon would be exposed to the forces of injury which could act on the 

unprotected axolemma causing transient membrane perturbation with calcium influx 

and the precipitation of calcium-mediated proteolytic pathways (Singleton et al., 2002). 

Although 10 kDa dextran passage was not observed at this site, this does not preclude 

the possibility of a more subtle membrane perturbation, allowing for calcium ion influx 

with the exclusion of higher molecular weight species. Alternatively, an alteration of 

sodium channels at the initial segment could also allow for traumatically-induced 

abnormal sodium influx, triggering voltage-gated calcium channel opening and a 

reversal of sodium-calcium exchange, leading to pathologically elevated intra-axonal 

calcium concentrations (Lopachin and Lehning, 1997; Wolf et al., 2001). 

In the current study, it is of note that no focal axolemmal permeability 

alterations to the extracellularly applied 10 kDa dextrans occurred following 

perisomatic axotomy. These observations contrast with previous findings in the 

brainstem where focal axonal flooding with a relatively large molecular weight species 

(horseradish peroxidase; 44 kDa) has been described as early as 5 min post-injury 

(Pettus et al., 1994). In this regard, our observations are more consistent with Smith et 

al. who, using in vitro dynamic stretch injury, demonstrated that axonal injury occurred 

independent of 570 Da dye uptake (Smith et al., 1999). Complicating this issue is the in 
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vivo work of Stone et al. who suggested that impaired axonal transport and altered 

axolemmal permeability occurred within different populations of axons following TBI 

(Stone et al., 2004) suggesting that not all injured axons demonstrate axolemmal 

permeability change, at least to the relatively large molecular weight tracers used. 

Conceivably, the axonal tracer flooding previously described within the brainstem may 

delineate the more severe forms of TAI. Perhaps, the perisomatically injured axons 

assessed in this study undergo more subtle pathological alterations of their axolemmae 

allowing for focal ion (e.g. calcium, sodium) influx, resulting in localized cytoskeletal 

pathology and impaired axonal transport. 

Not only did this study fail to demonstrate any acute axolemmal permeability 

changes to the tracer used but also, there was no evidence of tracer influx even in the 

face of focal axonal swelling and disconnection. To date, virtually no information exists 

concerning axolemmal resealing 1 repair following DBI-mediated axotomy. A recent 

study examining transection-mediated CNS axon resealing, a paradigm quite dissimilar 

from DBI, suggested delayed resealing (Ahmed et al., 2001). Work in non-neuronal 

cells has demonstrated that the membrane resealing following injury involves calcium- 

mediated vesicular fusion, with the observation that membrane integrity can be 

reestablished within seconds following injury (Terasaki et al., 1997; McNeil and Baker, 

2001). In the current study, despite tracer dispersion within the thalamic parenchyma 

prior to injury, there was no co-localization of dextran and APP immunofluoresence 

within the swellings, suggesting that either axolemmal sealing occurred prior to 

disconnection or that ultra-rapid membrane closure followed axotomy. The fact that we 
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observed disconnected axonal swellings consistently enclosed by an intact axolemma 

supports both possibilities. Thus, further studies targeting the axolemmal components 

involved in membrane resealing / repair following secondary axotomy are needed to 

decipher these complex biological issues. 

In addition to the above described rapid progression of axonal swelling and 

disconnection, the current study also provided unique information into the precise 

sequence of Wallerian change triggered by this observed axonal pathology. Like the 

processes of swelling and disconnection, the onset of Wallerian change was also rapid 

in contrast to that described in the existing literature. Classic descriptions of Wallerian 

change in the CNS of humans and higher order animals describe a process that is slow 

to evolve and persists for months to years post-injury (Strich, 1968; Becerra et al., 1995; 

Buss et al., 2004). Even in lower order animals and rodent models of TAI, this process 

is much more delayed than described in the current communication. Maxwell et al. 

provided the first ultrastructural evidence of Wallerian degeneration in the post-acute (> 

1 day) timeframe using an optic nerve stretch injury model of TAI (Maxwell et al., 

2003). Similar to our findings, they reported altered ultrastructural morphologies 

including lucent, abnormal mitochondria within injured axons, the separation of the 

myelin lamellae, as well as amorphous content, flocculent precipitate, and lack of 

axoplasmic organelles within the axonal segment distal to the swelling. However, the 

timeframe during which these findings were described was different from the current 

communication. Maxwell reported initial evidence of Wallerian change at 24 hrs post- 

injury; yet, our data suggests the onset of Wallerian change by 60 - 180 min. While 
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different injury models may account for this time discrepancy, this issue requires 

continued investigation. 

Finally, an important question remains regarding the implications of the above 

findings to our previous observations that the occurrence of perisomatic axotomy did 

not elicit rapid neuronal death (Singleton et al., 2002) as had been suggested by 

previous transection paradigms (Barron, 1983; Kreutzberg, 1995). We had assumed that 

this finding was related to the likelihood that, similar to the long tract axons within the 

brainstem, a slowly progressive axotomy within the perisomatic domain would shield 

the related soma from rapid exposure to the ionic dysregulation and its adverse 

consequences typically associated with physical transection models. In this context, our 

finding of rapid disconnection was unanticipated and initially suggested that our 

previous beliefs regarding subsequent cell death or survival were incorrect. However, 

despite the rapidity of the detachment observed in the current communication, the fact 

that detachment did not translate into rapid cell death suggests that cell death may not 

be directly related to the actual speed of disconnection. Rather, the fact that this 

disconnection occurred without related overt alterations in axolemmal permeability may 

constitute the more significant finding. As such, it indirectly suggests that the 

maintenance of membrane integrity may be pivotal to attenuating the onset of rapid 

neuronal death as seen with transection wherein the axon cylinder itself remains 

transiently yet fully exposed to the extracellular environment and its different ionic 

milieu. 
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In sum, the current communication builds on previous TAI studies and expands 

TAI characterization to include thalamic perisomatic TAI with ultra-rapid secondary 

axotomy and Wallerian degeneration within the context of DBI. Importantly, these 

findings have implications for preclinical studies of therapeutic interventions attempting 

to target pathological mechanisms during the delay prior to axonal swelling and 

disconnection, a goal that may ultimately prove unattainable in the perisomatic domain. 

This study again illustrates the complexity of TAI pathobiology and provides the 

impetus for future studies of neuronal membrane repair mechanisms and potential 

recovery following traumatic brain injury. 

ADDENDUM TO CHAPTER TWO 

Having evaluated the acute phase of perisomatic TAI pathogenesis, additional 

studies were undertaken to examine the long-term fate of these injured neurons. A 

previous study by Singleton and colleagues demonstrated that neurons injured within 

the perisomatic domain did not progress to acute cell death (Singleton et al., 2002). 

Therefore, we extended our observations to 28 d post-injury and utilized stereological 

assessments of neuronal somatic volume as well as employed additional antibody 

markers of neuronal health to determine what becomes of this uniquely injured neuronal 

population. Neuronal measurements were taken from sham-injured tissue sections and 

compared to measurements taken at 1,7, and 28 d post-injury. Our findings revealed a 

statistically significant decrease in tissue region and neuronal nuclear volume at each 
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post-injury time point when compared to sham control (article in preparation). These 

findings suggest neuronal atrophic changes in response to DBI. 

To further clarify mechanisms related to this observation, antibodies to neuronal 

deafferentation / remodeling (e.g. PSD-93, PSD-95, GAP-43, synaptotagmin, 

synaptophysin), intracellular protein synthesis (e.g. eif-2a(P), HSP-60, HSP-70), and 

cell death / survival (e.g. TUNEL, Nitro-Tyr, activated caspase-3, P-Bad, cyt c, PARP) 

were employed. While certain antibodies demonstrated immunoreactivity with regions 

of TAI pathology (e.g. eif-2a(P), HSP-70) that were consistent with previous 

communications from our laboratory (Singleton et al., 2002), the remaining antibodies 

failed to demonstrate compelling evidence linking perisomatic TAI to their respective 

mechanisms of action. 

Given the atrophic but apparently non-lethal neuronal response to perisomatic 

TAI, we then examined the corresponding microglia / macrophage responses within 

diffuse injured brain regions to provide a more comprehensive study of DBI and its 

related pathological sequelae as well as to compare / contrast this response to the 

inflammatory response following focal TBI. Chapter 3 will outline the 

neuroinflammatory response within specific anatomical loci known to elicit DBI- 

mediated TAI and uncomplicated by focal pathology. The relationship between 

inflammatory cells and injured neurons will be discussed as will implications for the use 

of neuroinflammatory responses as markers for DBI-mediated axonal pathology. 
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Chapter 3 

NEUROINFLAMMATORY RESPONSES TO DIFFUSE TRAUMATIC BRAIN 

INJURY 

Introduction 

The immune response to traumatic brain injury (TBI) involves microglia as well 

as leukocytes recruited from the surrounding vasculature. To date, this immunological 

response has been studied most extensively in the context of focal TBI despite the fact 

that diffuse TBI remains the most significant component of the morbidity associated 

with traumatic injury. Focal injuries, often associated with blunt force trauma, are 

associated with cerebral contusions and hematomas while diffuse injuries, a common 

result of motor vehicle accidents, depend on inertial forces and result in more subtle 

scattered microscopic pathology. To date, the immune cell responses to experimental 

focal brain injury have been studied extensively (Persson, 1976; Giulian et al., 1989; 

Clark et al., 1994; Mathew et al., 1994; Hermann et al., 2000; Chen et al., 2003). 

Additionally, limited studies have documented generalized immune cell responses to 

diffuse brain injury (DBI) (Oehmichen et al., 1999; Csuka et al., 2000), yet both clinical 

and experimental studies have been typically complicated by focal brain contusion and 

related hemorrhagic components 
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(Aihara et al., 1995; Soares et al., 1995; Carbonell and Grady, 1999) thereby allowing 

leukocytes to enter the injured brain parenchyma via the overt disruption of the blood- 

brain barrier (BBB). This contusion-related BBB disruption also permitted the 

unregulated passage of stimulatory molecules from the vasculature complicating the 

evaluation of glial activation. 

Fortunately, in the experimental setting other animal models have been 

developed to minimize the potential for contusion andor hemorrhage while maintaining 

many of the important features of diffuse TBI, including diffuse axonal injury (DAI) 

and its subsequent anterograde and retrograde consequences. Specifically, the use of 

midlinelcentral fluid percussion injury (cFPI) in the rat allows for the generation of 

traumatic axonal injury (TAI), the experimental counterpart of DAI, characterized by 

the focal impairment of axonal transport leading to progressive axonal swelling and 

secondary axotomy (Povlishock, 1992; Pettus and Povlishock, 1996; Povlishock and 

Pettus, 1996; Okonkwo et al., 1998). Moderately severe cFPI can induce perisomatic 

TAI (i.e. within 40-60 ym of the sustaining soma) allowing for the critical assessment 

of both the retrograde neuronal somatic responses to injury as well as specific 

anterograde 1 Wallerian responses as outlined in Chapter 2 (Singleton et al., 2002). 

Using this model, TAI has been observed scattered within various anatomical loci, 

including the mediodorsal neocortex, hippocampal dentate gyms, and dorsolateral 

thalamus without any associated contusions andor hemorrhagic-mediated tissue 

damage. These factors provided the opportunity to explore microglial 1 macrophage 
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responses within diffusely injured brain regions uncomplicated by focal brain 

pathology. 

The present study provides imm~~nocytochemical light, electron, and confocal 

microscopic characterization of the immune responses to DBI in the absence of focal 

tissue damage. Microglia within brain loci revealing TAI responded rapidly, albeit in an 

initially uncoordinated fashion, via changes in their cellular morphology. This was 

followed by their persistent activation and phagocytic activity. In contrast, the microglia 

observed in non-TAI containing regions maintained a resting phenotype. Macrophages 

displayed similar spatiotemporal responses to DBI and its associated TAI. Select 

macrophages approximated scattered somata of traumatically injured neurons showing 

evidence of somatic bouton disruption and loss. Taken together, these findings suggest 

that neuroinflammatory responses to DBI with TAI may be distinct from those related 

to more focal TBI pathology. These findings may have implications for post-mortem 

histopathological evaluation of TBI and its characterization based upon specific 

microglial / macrophage responses. 

Materials and Methods 

Animal preparation and injury 

To explore microglial / macrophage responses to DBI, animals were subjected to 

moderate cFPI consistent with methods described previously (Dixon et al., 1987; 

Singleton et al., 2002). Adult male Sprague Dawley rats (375 - 400 gm) were 

anesthetized with 4% isoflurane in 70% N 2 0  and 30% 02, intubated, and maintained on 
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a ventilator with 1-2% isoflurane for injury preparation. Intubated animals were placed 

on a heating pad connected to a thermostat controlled by a rectal probe (Harvard 

Apparatus, Holliston, MA) to maintain 37OC body temperature. To prepare the animal 

for cFPI, the top portion of a Leur-Loc syringe hub of a 20 gauge needle, two fixation 

screws, and dental acrylic were fixed to a midline craniotomy in the skull over the intact 

dura and then connected to the injury device. Briefly, a 4.8mm circular craniotomy 

along the sagittal suture midway between bregma and lambda was generated taking care 

not to disrupt the underlying dura and superior sagittal sinus. The top portion of the 

Leur-Loc hub (Becton Dickinson, Franklin Lakes, NJ) was cut away from the 20 gauge 

needle, beveled, scored, and affixed over the craniotomy site using cyanoacrylate. After 

confirming the integrity of the seal between the hub and the skull, fixation screws were 

inserted into lmm holes drilled into the right frontal and occipital bones. Dental acrylic 

(Hygenic Corp., Akron, OH) was applied around the hub and over the screws and 

allowed to harden to provide stability during the injury induction. After the dental 

acrylic hardened, the skin was closed over the hub with sutures, topical Lidocaine 

ointment was applied, and the animal was removed from anesthesia and monitored in a 

warmed cage until fully recovered (- 1 hr). 

Prior to injury, each animal was again anesthetized with isoflurane. The incision 

was quickly opened and the male end of a spacing tube was inserted into the Leur-Loc 

hub. The female end of the spacer-hub assembly, filled with normal saline, was then 

inserted onto the male end of the fluid percussion device, ensuring that no air bubbles 

were introduced into the system. A - 2.1 atmosphere (1.9 - 2.3 atm) injury was 
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administered, consistent with brain injury of moderate severity (Dixon et al., 1987). 

Injury preparation and induction were completed prior to the animal's recovery from 

anesthesia. Following injury, the spacer-hub assembly was immediately removed en 

bloc, bleeding was controlled with Gelfoam (Parmacia, Kalamazoo, MI), and the 

incision was closed with sutures. Animals were monitored for spontaneous respiration 

and, if necessary, ventilated with room air to ensure adequate post-injury oxygenation. 

Post-injury recovery times for the following reflexes were recorded: toe pinch, tail 

pinch, corneal blink, pinnal, and righting. Following recovery of the righting reflex, 

animals were placed in a holding cage with a heating pad to ensure maintenance of 

normothermia and monitored until the appropriate perfusion time. For sham-injured 

control animals, the above steps were followed without injury induction. All injured 

animals had righting reflex recovery times greater than 6 min compared to less than 2 

min for sham-injured animals (data not shown). Experiments were conducted in 

accordance with NIH and institutional guidelines concerning the care and use of 

laboratory animals (IACUC). 

Tissue Preparation 

Animals (n = 6 / injury group, 2 / sham-injury group, and 2 naive) were 

euthanized at t = 6 and 24 hrs as well as 2,7,  14, 21, and 28 days post-injury via an 

overdose of sodium pentobarbital IP (150 mglkg) and transcardially perfused with 4% 

paraformaldehyde in Millonig's buffer for immunocytochemistry. Following perfusion, 

brains were removed and blocked in a coronal blocking device to include the thalamus 
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with overlying neocortex and hippocampus (Fig. 3-1). A previous study, as well as 

observations from Chapter 2, has identified TAI scattered throughout these regions, 

consistent with the occurrence of diffuse injury (Singleton et al., 2002). The tissue block 

was flat-mounted on a metal plate with cyanoacrylate, embedded in agar, and sectioned 

in O.1M phosphate buffer at a thickness of 40 pm using a vibrotome (Leica 

Microsystems, Bannockburn, IL). Serial coronal sections (n = 60 sections at 40 pm / 

section) were collected starting from 1600 pm caudal to the anterior commissure. This 

sampling strategy allowed for a comprehensive examination of the neocortex, 

hippocampus, and thalamus (Paxinos and Watson, 1986). Systematic uniform sampling 

of coronal sections was employed with every fifth section collected for a total of twelve 

sections per animal. Additional tissue was stored in Millonig's buffer in 12-well culture 

plates (Falcon, Newark, DE). 

Immunocytochemistry for confocal microscopy 

Double-labeling strategies were employed to permit simultaneous visualization 

of microglia / macrophages and TAI, a key feature of diffuse TBI. To label microglia, 

tissue sections were incubated overnight with lectin (Alexa 488 conjugated isolectin B4 

from GrifSonia simplicifolia (5 pglml); Molecular Probes, Eugene, OR) in 20% normal 

horse serum (NHS) in artificial cerebrospinal fluid (aCSF: 126 mM NaC1, 3 nlM KC1, 

1.25 rnM NaH2P04, 2 mM MgC12, 2 rnM CaC12, 10 mM glucose buffered with 26 rnM 

NaHC03) consistent with previously described methods (Dailey and Waite, 1999; 

Stence et al., 2001; Grossmann et al., 2002; Carbonell et al., 2005). TAI was then 
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Fig. 3-1. The low-magnification microphotograph is provided to orient the reader to the 
diffusely injured brain loci revealing significant TAI that is uncomplicated by focal 
pathology; A: mediodorsal neocortex, B: hippocampal dentate gyms, C: dorsolateral 
thalamus. Activated microglia and macrophages were localized to these areas following 
diffuse brain injury. In contrast, asterisks delineate related regions also sampled in the 
current investigation that did not contain significant TAI or other forms of overt 
pathology. 
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visualized using antibody to the amyloid precursor protein (APP) as described below. 

APP moves via anterograde transport and pools at sites of impaired axonal transport 

thus serving as a marker of TAI (Stone et al., 2000). To ensure maintenance of lectin 

binding, all steps of the lectin - APP double-labeling procedure were conducted in 

aCSF. 

To label macrophages, sections were first preincubated for 60 min in 10% NHS 

with 0.2% Triton X-100 in phosphate buffered saline (PBS) and then incubated 

overnight with macrophage (1:2000; mouse anti-rat CD68 (ED1); Serotec, Oxford, 

England) primary antibody in 1% NHS in PBS / 2% bovine serum albumin (BSA). 

After removal of the antibody solution, sections were rinsed and incubated for 2 hrs in 

Alexa 488 goat anti-mouse IgG (1: 1000; Molecular Probes) with 1 % NHS in PBS / 2% 

BSA prior to processing for TAI. 

For labeling TAI, sections were rinsed and incubated with 10% normal goat 

serum (NGS) in PBS (except for lectin - APP processing which used aCSF) for 45 min 

followed by an overnight incubation in C-terminus specific APP primary antibody 

(1: 1000; rabbit anti-C-APP; Zymed, San Francisco, CA) with 1% NGS in PBS. 

Sections were then rinsed and incubated for 2 hrs with Alexa 594 goat anti-rabbit IgG 

(1: 1000; Molecular Probes) in 1 % NGS in PBS. Sections were rinsed six times in PBS 

for 5 min and twice in 0.1M phosphate buffer for 10 min. Following these rinses, 

sections were mounted on gelatin-coated slides. Sections were mounted with an anti- 

fade mounting media (ProLong; Molecular Probes), coverslipped, and sealed with nail 

polish. As an internal control, additional sections were processed as described above; 
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however, primary antibodies were omitted from the procedure. Images were captured 

using a confocal microscope (Leica TCS-SP2 AOBS; Leica Microsystems, 

Bannockburn, IL) with appropriate excitation lasers, detectors, and analysis software. 

Zmmunocytochemistry for routine light and electron microscopy 

In these protocols, sections were processed with antibodies to either CDl lb/c 

(microglia) or CD68 (macrophages) alone or together with antibodies to APP to detect 

diffusely injured axons. CDl lblc antibody recognizes the microglia-specific 

complement type 3 receptor thus serving as a complementary marker to lectin. In 

addition to these approaches, adjacent brain sections were processed with antibodies to 

endogenous rat albumin. This was done to assess the potential for injury-induced BBB 

disruption. Animals for LM and EM evaluation (n = 3 / injury group, 1 / sham-injury 

group, 1 naive) were perfused with 4% paraformaldehyde / 0.1 % glutaraldehyde in 

Millonig's buffer. Sections were then processed for either CD 1 lblc, CD 68, and 

albumin or CDl lb/c - APP and CD68 - APP dual immunoreactivity.(Stone et al., 

2000) Briefly, endogenous peroxidase activity was blocked using 0.3% H202 in PBS for 

30 min followed by temperature-controlled modified microwave antigen retrieval 

(Stone et al., 1999) and preincubation in 10% NGS with 0.2% Triton X-100. Sections 

were incubated overnight with either CDl 1 b/c (1 :700; mouse anti-rat CDl 1 b/c; BD 

Pharmingen, San Diego, CA) or CD68 (1:700) primary antibody. Sections were then 

incubated for 1 hr with biotinylated rat-absorbed goat anti-mouse IgG (1:200 Vector, 

Burlington, CA) secondary antibody. Select sections for dual-labeling underwent 
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additional processing beginning with preincubation in 10% NGS followed by C- 

terminus specific APP (1: 1000) primary antibody. At this time, sections for single-label 

albumin (1 :40,000; rabbit anti-rat albumin antiserum; Bethyl Laboratories, 

Montgomery, TX) primary antibodies were also processed in 1% NGS in PBS. Sections 

processed with APP or albumin antibodies were then incubated for 1 hr with 

biotinylated rat-absorbed goat anti-rabbit IgG (1:200 Vector). All sections were then 

visualized via incubation in avidin-horseradish peroxidase complex (Vectastain ABC 

Standard Elite Kit; Vector) for 1 hr followed by 0.05% diaminobenzidine (DAB), 

0.01% H202, and 0.3% imidazole in O.1M phosphate buffer for 10-20 min. The 

common chromogen DAB was used for convenience in that structural correlates of 

BBB disruption, axonal injury, and microglial I macrophage change were so discreet as 

to create no problem in morphological recognition. Sections processed for either CD 

1 lblc, CD 68, or albumin as well as select sections processed for CD 1 lblc - APP and 

CD 68 - APP were mounted on gelatin-coated slides, dehydrated, and coverslipped for 

routine LM evaluation while the remaining dual-labeled sections underwent continued 

processing for EM. As an internal control, additional sections were processed as 

described above; however, primary antibodies were omitted from the procedure. LM 

images were captured using an Eclipse 800 microscope (Nikon, Tokyo, Japan) fitted 

with a Spot-RT digital camera (Diagnostic Instruments, Sterling Heights, MI). 

As noted, dual-labeled sections were processed for EM to ascertain 

ultrastructural detail relevant to those changes observed via confocal microscopy. 

Following antibody processing, the tissue was osmicated in 1 % Os04 and then placed in 
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graded alcohols and propylene oxide prior to placement in epoxy resin (Ted Pella, 

Redding, CA). Sections were then embedded between plastic slides (Thomas Scientific 

Co., Swedesboro, NJ), placed in 55OC oven for 3 days, and then scanned to identify 

immunoreactive axonal swellings along with microglia I macrophages. Once identified, 

these sites were removed, mounted onto plastic studs, and thick sectioned to the depth 

of interest using an ultramicrotome (Leica Ultracut R; Wien, Austria). Semithin sections 

(1 pm) stained with 1 % Toluidine Blue were again screened for evidence of microglial 

activation I macrophage localization with TAI. Serial thin sections (70 nm) were then 

cut, picked up onto Formvar-coated slotted grids, and stained in 5% uranyl acetate in 

50% methanol for 2 min. and 0.5% lead citrate for I min. Images were captured using a 

JOEL 1230 electron microscope using a digital camera (Gatan Digital Micrograph, 

Pleasanton, CA). 

Results 

Naive and Sham-injury - General findings and cellular phenotypes 

Macroscopically, sham-injured brains showed no evidence of compression, 

contusion, or tissue loss. Tissue sections from naive and sham-injured animals 

processed for the visualization of APP and examined by light and confocal microscopy 

demonstrated limited background staining with the finding of only isolated 

immunoreactive somata. There was no evidence, however, of immunoreactive axons or 

swellings adjacent to these somata. Markers of microglia (isolectin B4 and CD 1 lblc) 

demonstrated conventional resting morphology in that microglia exhibited a small cell 
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body with highly ramified processes and were distributed evenly throughout the brain 

parenchyma (Fig. 3-2A-C). Sections processed for macrophage immunoreactivity (CD 

68) demonstrated a limited number of immunoreactive cells primarily in perivascular 

locations (Fig. 3-3A-C). Sham-injured tissue sections processed for the visualization of 

albumin revealed only limited immunoreactivity underlying the craniotomy site 

together with minimal imrnunoreactivity within the subcortical white matter. Otherwise, 

albumin immunoreactivity was confined to the vascular lumen and walls with no 

extension into the brain parenchyma (Fig. 3-4A). 

Diffuse Injury - Light, electron, and confocal microscopic findings 

Injured brains shared identical macroscopic features with sham-injured brains 

with the exception of limited subarachnoid hemorrhage found under the craniotomy 

site. Additionally, scattered petechial hemorrhages could be observed within the corpus 

callosum. 

APP Zmmunoreactivity 

APP immunoreactive axonal swellings, a signature of diffuse TBI, were visible 

at 6 and 24 hrs post-injury. Consistent with previous descriptions of experimental DBI 

in this animal model as outlined in Chapter 2, axonal swellings were most prominent 

within the mediodorsal neocortex, hippocampal dentate gyms, and dorsolateral 

thalamus with additional swellings found scattered in the corpus callosum, subcortical 

white matter, and brainstem (Singleton et al., 2002). Select swellings could be traced 
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Fig. 3-2. Spatiotemporal evaluation of microglia activation within DBI loci. Using 
antibodies to CD 1 1 blc, that recognize the microglia-specific complement type 3 
receptor, microglial morphology was visualized within loci known to elicit DBI- 
mediated TAI. Note that sham-injury (A-C) reveals microglia with resting morphology 
characterized by a small cell body with highly ramified processes. Between 6 - 24 hrs 
post-injury (D-F), most microglia demonstrate the initial signs of activation including 
increased cell body size, with a concomitant reduction in process ramification leading to 
an increased immunoreactive ameboid-like morphology. However, others maintain a 
resting phenotype. Within DBI loci, activated morphology predominates and persists at 
7 (G-I), 14 (J-L), and 28 (M-0) d post-injury. (scale bar = 100 pm) 
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Fig. 3-3. Spatiotemporal evaluation of macrophage localization within DBI loci. Similar 
to microglial evaluation, antibodies to CD 68, that recognize a macrophage-specific cell 
surface marker, were used to visualize macrophages within loci known to elicit DBI- 
mediated TAI. Sham-injury (A-C) reveals limited numbers of immunoreactive cells 
primarily in perivascular locales. Between 6 - 24 hrs post-injury, parenchymal 
macrophage immunoreactivity can be observed within the neocortex (D) and 
hippocampus (E) with minimal thalamic (F) involvement. However, note that by 7 d 
post-injury, all three regions (G-I) demonstrate robust macrophage immunoreactivity 
which persists at 14 (J-L) and 28 (M-0) d post-injury. (scale bar = 100 pm) 
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Fig. 3-4. These low-magnification brain microphotographs illustrate the spatiotemporal 
course of albumin immunoreactivity following DBI. Note that with sham-injury, 
albumin is confined to the vascular walls and lumen with limited imrnunoreactivity 
observed in the subcortical white matter. However, at 6 hrs post-injury, diffuse albumin 
immunoreactivity is observed throughout the interstitium of the brain. By 24 hrs post- 
injury, scattered immunoreactivity persists within neocortical and hippocampal 
parenchyma while the thalamic parenchyma now reveals limited immunoreactivity. By 
7 d post-injury, only minimal albumin irnmunoreactivity is present. At all post-injury 
time points, there was no evidence of contusion, hemorrhage, or overt tissue necrosis. 
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back to their somata of origin while others were found in isolation. Focal axonal 

swellings demonstrated no distal immunoreactivity consistent with axonal 

disconnection that has been previously characterized in Chapter 2. By 7 d post-injury, 

these immunoreactive axonal swellings were no longer visible, again consistent with 

previous observations (Singleton et al., 2002). 

Albumin Immunoreactivity as a Marker of BBB Alteration 

At 6 hrs post-injury, endogenous albumin immunoreactivity could be identified 

diffusely distributed throughout the interstices of the neocortex, hippocampus, and 

thalamus. This blood-brain disruption to the normally intravascularly confined serum 

albumin occurred without evidence of overt contusion, hemorrhage, or tissue disruption 

(Fig. 3-4B). By 24 - 48 hrs post-injury, scattered albumin immunoreactivity persisted 

within the interstices of the neocortex and hippocampus while the thalamus now 

revealed limited immunoreactivity again confined to the extracellular compartment 

(Fig. 3-4C). By 7 d post-injury, only minimal albumin immunoreactivity was evident 

with the tissue now appearing reminiscent of that obtained from sham-injured animals 

(Fig. 3-4D). 

Microglia / Macrophage Responses to DBI 

Having evaluated the 6 and 24 h as well as 2 d post-injury time points, 

observations from these tissue sections revealed comparable findings. These findings, 

however, differed significantly from findings observed between 7 - 28 d post-injury. 
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Therefore, observations are grouped as post-acute (6 - 48 h post-injury) and longer- 

term (7 - 28 d post-injury) to provide clarity and to highlight responses within these 

post-injury time frames. 

Post-acute Neuroinflammatory Responses 

At 6 - 24 hrs post-injury, LM and confocal evaluation revealed scattered 

irnrnunoreactive microglia within the mediodorsal neocortex, hippocampal dentate 

gyms, and dorsolateral thalamus that maintained highly ramified processes consistent 

with a resting phenotype. Other scattered microglia demonstrated reduced 

immunoreactivity within their processes together with rounding of their cell bodies, all 

of which were suggestive of the initial stages of activation (Fig. 3-2D-F). Microglia 

found scattered among diffusely injured axons did not show any consistent spatial 

relationship to the axonal swellings, their proximal axonal shafts, or their downstream 

disconnected axonal segments that now revealed early anterograde change. In contrast 

to those microglia found within these diffusely injured loci, microglia within the 

adjoining parenchyma wherein no axonal swellings could be found, maintained a 

resting morphology. 

At the EM level, microglia were identified via the presence of an electron-dense 

CD 1 lblc reaction product that outlined their cell membranes. The resting and activated 

microglial ultrastructural features were similar although the resting cells displayed 

highly ramified appendages, while activated cells revealed enlarged, amoeboid-like cell 

membranes. The microglia contained a prominent, round nucleus with heterogeneous 
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chromatin clumps beneath the nuclear envelope. Their cytoplasm revealed granular 

endoplasmic reticulum with long, narrow cisternae extending through the cytoplasm. 

Mitochondria together with electron dense laminar bodies as well as inclusion bodies 

characteristic of lipofuscin were also distributed throughout the cytoplasm. Despite 

axonal injury, no specific microglia - axonal associations could be discerned within the 

above described loci. Activated microglia did not directly approximate either the axonal 

swellings or their proximal / distal axonal segments (Fig. 3-5). 

In the 6 - 24 h time frame, immunoreactive tissue macrophages could also be 

identified by LM and confocal microscopy. These cells were localized to the neocortical 

and hippocampal parenchyma at 6 hrs post-injury without thalamic involvement (Fig 3- 

3D-E). The adjoining, non-TAI containing brain regions revealed no parenchymal 

macrophage immunoreactivity. In all cases, macrophage morphology was similar to that 

observed in sham-injured tissue. Within the neocortex, the macrophages displayed a 

graded parenchymal distribution; heavier macrophage concentrations occurred in the 

superficial cortex abutting the subarachnoid space, with increasingly reduced 

concentrations seen in the deeper cortical layers. In contrast, the hippocampal 

macrophage distribution was more heterogeneous in that cells were found evenly 

scattered throughout the hippocampal region. While diffusely distributed within these 

loci, macrophages were not associated with any component of axonal injury. EM 

evaluation of macrophage ultrastructure, via CD 68 electron-dense reaction product 

membrane deposition, was comparable to that of activated microglia and confirmed no 

axonal associations. 
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Fig. 3-5. Electron micrograph of the dorsolateral thalamus at 6 - 24 hrs post-injury. 
Dual-label antibody processing for microglia (CD 1 lblc) and TAI (APP) was employed 
although both appear electron dense at the EM level. Note that electron-dense reaction 
product and distinct ultrastructural morphology allow for identification of both the 
microglia and reactive axons. Activated microglial ultrastructure (single asterisk) 
demonstrates an ameboid-like membrane, ringed with an electron-dense CD 1 lblc 
reaction product. Also note the prominent round nucleus with heterogeneous chromatin 
clumps beneath the nuclear envelope and granular endoplasmic reticulum with long, 
narrow cisternae extending through the cytoplasm. Electron-dense laminar bodies as 
well as inclusion bodies characteristic of lipofuscin can also be seen distributed 
throughout the cytoplasm. TAI (double asterisk) is characterized by axonal swellings 
containing electron-dense APP reaction product, organelle pooling, neurofilament 
misalignment, and microtubule loss. Additionally, more advanced axonal pathology 
(arrow) is found within this field. In this image, the microglia approximates the axonal 
swelling yet does not directly engage it, confirming LM and confocal impressions. Note 
that microglia are often separated from sites of axonal injury by glial swellings. (scale 
bar = 2 pm) 
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By 24 - 48 hrs post-injury, microglial immunoreactivity within the above described loci 

again revealed resting and activated phenotypes while microglia within adjoining, non- 

TAI containing parenchyma still maintained a resting morphology. 

Within the brain sites revealing diffuse TAI, activated microglia appeared more 

numerous than previously seen. The activated microglia demonstrated reduced branch 

ramification and more intense immunoreactive amoeboid-like morphology. Despite 

enhanced activation, there was still no evidence of direct microglial engagement of the 

traumatically injured axons, similar to observations made at the earlier post-injury time 

point (Fig. 3-6). While activated microglial morphology now predominated within 

injured loci, additional microglia adopted a lengthened morphology. This suggested a 

redistribution of their processes consistent with potential migration (Fig. 3-7). EM 

evaluation revealed activated microglia within injured loci scattered among sites of 

axonal injury characterized by electron-dense APP reaction product, organelle pooling, 

neurofilament misalignment, and microtubule loss (Fig. 3-5). However, there was no 

evidence of microglial projections or engulfment of these sites of injury and reactive 

change. In fact, glial swellings often separated microglia from sites of axonal injury. 

LM and confocal microscopy also revealed macrophage immunoreactivity that persisted 

within neocortical and hippocampal parenchyma, with scattered thalamic 

immunoreactivity now recognized at 24 - 48 hrs post-injury (Fig. 3-3F). While 

numerous macrophages were found in isolation scattered throughout these brain loci, 

occasional macrophages could now be recognized approximating the somata of 

perisomatically axotomized neurons, particularly those within the neocortex (Fig. 3-8). 
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Fig. 3-6. This figure is a confocal micrograph of the dorsolateral thalamus at 24 hrs 
post-injury following double-label antibody processing for microglia and TAI. 
Microglia (isolectin B4; green - double arrowheads) and TAI (APP; red - single 
arrowheads) were identified to assess potential interactions between inflammatory cells 
and TAI, a key characteristic of DBI. Note that while microglial activation and DBI- 
mediated TAI pathogenesis share a spatiotemporal relationship, there is no evidence of 
direct microglial association with any component of injured axons at this post-injury 
time point. Although activated rnicroglia can be seen scattered among traumatically 
injured axons, no direct engagement of these fibers occurs. (scale bar = 20 pm; Note: 
Isolectin also binds blood vessels (BV).) 
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Fig. 3-7. This figure reveals a confocal micrograph of microglia processed with Alexa- 
488 conjugated isolectin B4 antibodies at 24 hrs post-injury. While most microglia 
within DBI loci adopt activated phenotypes (arrows), select cells now reduce their 
ramified processes and redistribute them in an elongated fashion (arrowheads). The 
generation of apparent forward and trailing processes suggests potential migration 
although fixation of tissue prior to immunocytological processing made definitive 
evaluation of this migration difficult. (scale bar = 20 pm) 
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Figure 3-7 
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Macrophages were observed encompassing significant portions of the neuronal soma, 

with many now taking on a rounded or semi-circular shape to closely follow the 

neuron's contour. EM evaluation revealed the macrophages' close adherence to the 

neuronal somatic membrane (Fig. 3-9). With the approximation of the somatic 

membrane, there was no evidence of somatic engulfment or phagocytic activity; yet, 

this macrophage investment was associated with somatic bouton disruption (Fig. 3-9A) 

and loss (Fig. 3-9B). 

Longer-term Neuroinflammatory Responses 

By 7 d post-injury, LM and confocal microscopy revealed enhanced microglial I 

macrophage immunoreactivity within the diffusely injured loci (Figs. 3-2G-I and 3-3G- 

I) with increased macrophage immunoreactivity recognized within the thalamus (Fig. 3- 

31). Once again, only resting microglial morphology and sparse macrophage 

immunoreactivity could be observed within adjoining, non-TAI containing regions. LM 

evaluation of TAI-containing loci revealed no evidence of widespread necrotic neuronal 

cell death or tissue necrosis similar to that typically described following focal brain 

pathology. Similarly, no related microglial or macrophage clustering was observed in 

relation to these diffusely injured loci and their damaged axonal segments despite 

continued microglial activation and the presence of macrophages. 

At 14 - 28 d post-injury, activated microglial I macrophage immunoreactivity 

persisted within the previously identified neocortical, hippocampal, and thalamic loci 

(Figs. 3-25-0 and 3-35-0). Limited activated microglia / macrophages were now 
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Fig. 3-9. These electron micrographs of DBI loci at 24 hrs post-injury were processed 
following dual-labeling of macrophages (CD 68) and TAI (APP) to identify these 
components using methodology similar to microglia - TAI evaluation. In these 
examples, macrophages approximate somata within DBI-mediated TAI loci. While 
select macrophages (asterisk) maintain their conventional rounded morphology (A), 
other microglia adopt semi-circular morphology to approximate a significant portion of 
the somatic membrane (B). Macrophage ultrastructure is similar to that of activated 
microglia while neuronal somatic ultrastructure (Nu) reveals no significant pathological 
change. Note that this macrophage investment is associated with apparent bouton 
disruption (box with enlargement in panel A). Other examples reveal somatic 
membranes devoid of bouton ultrastructure (B). (scale bar = 1 pm; enlargement scale 
bar = 250 nm) 
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identified within tissue immediately adjacent to these loci with more remote sites 

continuing to maintain resting microglial morphology and sparse macrophage 

immunoreactivity. In contrast, enhanced macrophage immunoreactivity was recognized 

along the dentate gyms granule cell layer (Fig. 3-3N). While not observed at earlier 

time points, limited activated microglial aggregations were now seen, particularly 

within the thalamus at 28 d post-injury (Fig. 3-10). However, these aggregations, 

previously described following focal pathology, were not numerous within injured loci. 

Comparable to LM observations from earlier time points, there was no evidence of 

widespread necrotic cell death or tissue necrosis. 

While evaluations of immune cell - axonal interactions at earlier time points did 

not reveal specific spatial associations, EM evaluation of activated microglia 1 

macrophages at all time points beyond 7 d post-injury revealed consistent immune cell 

interactions with axonal injury foci. These interactions included immune cell 

projections and/or cell body contact with damaged axons or their related debris as well 

as phagocytosis, inferred from myelin debris observed within the cytoplasm of 

immunoreactive cells (Fig. 3-1 1). Similar to LM findings within this time frame, 

widespread necrotic cell death or tissue necrosis was not observed. In a related finding, 

macrophages localized to neuronal somatic membranes still did not show evidence of 

somatic engulfment or phagocytic activity. 



www.manaraa.com

Fig. 3-10. This micrograph reveals the atypical finding of microglial aggregations 
within the dorsolateral thalamus at 28 d post-injury. Using antibodies to CD 1 lblc, the 
majority of activated microglia within DBI loci do not cluster (arrow). However, limited 
findings of grouped activated microglia are observed (encircled). This finding is more 
characteristically observed during histological examination following focal brain injury. 
(scale bar = 100 pm) 
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Fig. 3-1 1. These electron micrographs of DBI loci at 7 - 28 d post-injury identified 
microglia using electron-dense CD 1 lb/c reaction product deposition on the cell 
membrane. Although microglia did not engage damaged axons at more acute post- 
injury time points, these micrographs reveal activated microglial recognition of axonal 
debris (arrows) by projection formation (A) and direct cell body contact (B). 
Phagocytosis is inferred from myelin debris observed within the immune cell cytoplasm 
(box in panel B). Neither widespread immune cell clustering nor somatic engulfment, 
each suggestive of neuronal cell death, are observed at this time interval. (scale bar = 2 
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Figure 3-11 
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Discussion 

The inflammatory response to TBI represents a coordinated effort by resident 

microglia and peripheral blood leukocytes to protect the brain following trauma. 

Although this protective function is essential to preserving viable tissue and promoting 

recovery, recent evidence suggests that the neuroinflammation itself may also be 

responsible for the initiation of delayed I secondary injury cascades (Morganti- 

Kossmann et al., 2002). Accordingly, a fully comprehensive examination of TBI- 

mediated neuroinflammation is essential for designing rational approaches to 

therapeutically modulate pathological aspects of this response. With this rationale in 

mind, this manuscript provided a spatiotemporal characterization of microglia I 

macrophage interactions following DBI as assessed by light, confocal, and electron 

microscopic evaluation of microglial activation and macrophage localization within the 

diffusely injured brain revealing TAI in the absence of focal contusion or hemorrhage. 

As intrinsic primary immune effecter cells of the brain parenchyma, microglia 

are the first line of defense following traumatic insult (Kreutzberg, 1996). Focal TBI 

often results in primary axotomy together with other destructive and ischemic neuronal 

changes while diffuse TBI results primarily in DAI, known as TAI in the experimental 

setting, that leads to delayed or secondary axotomy without concomitant tissue 

disruption. Previous studies documenting focal TBI-mediated microglial activation have 

demonstrated a robust response to primary axotomy generated via either ex vivo slice 

preparation (Dailey and Waite, 1999; Stence et al., 2001; Grossmann et al., 2002), in 

vivo stab wounding (Carbonell et al., 2005), or in vivo medial forebrain bundle 
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transection (Cho et al., 2006), all of which involve direct tissue transection. In 

comparison, microglial responses to diffuse TBI and its associated axotomy have 

received little attention. Previous studies of rodent and human microglial activation 

following TBI have demonstrated no specific associations between microglia and 

injured axons (Oehmichen et al., 1999; Csuka et al., 2000) despite evidence for 

traumatically induced microglia - neuronal interactions (Aldskogius and Kozlova, 

1998; Bruce-Keller, 1999). In the current communication, microglial activation shared a 

spatiotemporal relationship with TAI within diffusely injured brain loci that included 

the mediodorsal neocortex, hippocampal dentate gyrus, and dorsolateral thalamus. 

However, the activated microglia did not show, via confocal or electron microscopy, 

any specific andlor consistent relationship to sites of axonal injury in the acute stages 

following injury. The observed activation persisted until at least 28 d post-injury and in 

this sense, was consistent with time courses of microglial activation following brain and 

spinal cord trauma (Aihara et al., 1995; Popovich et al., 1997;Stence et al., 2001; 

Rodriguez-Paez et al., 2005). However, in the current study, the immune cell 

recognition of axonal debris at the EM level occurred only between 7 - 28 d post-injury. 

In contrast to this microglial activation, other microglia within adjoining, non-TAI 

containing parenchyma maintained a resting morphology. This data suggests an early 

generalized microglial response to DBI followed by a delayed targeted response to its 

attendant axotomy, with the microglia in non-TAI containing regions remaining 

quiescent. 
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This initial microglial activation without specific axonal targeting suggests that 

in DBI, microglia are activated within their local microenvironments yet remain 

stationary despite DBI-mediated axotomy. A recent study by Nimmerjahn and 

colleagues (2005) supports this observation via documentation that resting microglia, 

traditionally believed to be dormant during times of homeostasis, actively survey their 

local microenvironment using projections from ramified processes, sending longer 

projections to areas of local tissue damage associated with overt tissue disruption and 

BBB compromise while their cell bodies remain stationary (Nimmerjahn et al., 2005). It 

seems reasonable that microglia can adopt activated phenotypes and continuously 

monitor local parenchymal domains yet remain non-migratory, failing to send 

projections to sites of axonal injury. This finding with diffuse injury may reflect the 

lack of appropriate chemotactic stimuli that are typically generated following focal 

brain injury wherein overt BBB and/or tissue disruption occurs (Chen et al., 2003; 

Carbonell et al., 2005). Further, moving on the premise that rapid axolemmal closure 

associated with perisomatic TAI and consequent axotomy, as outlined in Chapter 2, 

most likely preclude the unregulated release of intra-axonal components into the 

surrounding parenchyma, this also suggests insufficient chemotactic molecule 

concentrations to stimulate migration and/or projection formation. In the current study, 

the subtle interstitial albumin immunoreactivity at 6 hrs post-injury, combined with the 

absence of overt neuronall tissue damage, supports a scenario in which blood-borne 

signaling molecule concentrations may be sufficient to achieve microglial activation yet 

insufficient to stimulate migration and/or projection formation, at least in the early 
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stages following injury. Our finding of microglia within adjoining, non-TAI containing 

regions that are also exposed to albumin yet fail to demonstrate an activated phenotype 

suggests a specific role for TAI pathogenesis in microglial activation. To date, the 

molecular mechanisms dictating traumatically induced microglial activation and 

motility are poorly understood. However, studies are presently beginning to elucidate 

the specific molecules and receptors, including ATP and cysteine-cysteine chemokine 

receptor 5, involved in microglial activation and chemotaxis following trauma (Polazzi 

and Contestabile, 2002; Carbonell et al., 2005; Davalos et al., 2005). 

Although microglia were not recruited to sites of TAI within the acute phases 

following injury, motile morphology was observed in select cells. Following DBI- 

induced activation, select microglia became elongated with the suggestion of forward 

and trailing processes. Although the majority of activated microglia remained diffusely 

distributed throughout injured loci, microglial motility is consistent with infrequent 

observations of microglial aggregations at later time points post-injury. Further 

assessment of microglial motility was confounded by the acute upregulation of 

microglial APP following activation (Banati et al., 1993), which made LM distinction 

between microglial processes and reactive axons difficult in certain instances, and by 

the inability of APP immunoreactivity to recognize TAI at longer post-injury time 

points (Singleton et al., 2002). The development of novel TAI markers allowing for 

long-term labeling of injured axons will allow for more definitive conclusions 

concerning rnicroglial motility to sites of diffuse axonal pathology. 
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In addition to microglial activation within injured loci, macrophages were also 

found within neocortical and hippocampal parenchyma at 6 hrs post-injury, with their 

recognition in the thalamus by 24 hrs. In all of these loci, the macrophages persisted 

until at least 28 d post-injury. Csuka and colleagues (2000), using an impact- 

acceleration model of DBI that did not document immune cell interactions with sites of 

axonal injury, described macrophage immunoreactivity within the meninges, basal 

subarachnoid space, Virchow-Robin's space, ventricular choroid plexus, subventricular 

zone, and perivascular locales suggesting minimal post-injury parenchymal entry 

(Csuka et al., 2000). In contrast, in the current study macrophages were distributed 

within the parenchyma of the diffusely injured loci. For example, macrophages were 

observed within superficial and deep layers of the neocortex, a finding consistent with 

previous observations of macrophage infiltration following lateral fluid percussion- 

induced mild brain injury (Aihara et al., 1995). Parenchymal macrophage 

immunoreactivity at relatively early post-injury time points is strongly suggestive of 

macrophages originating from the peripheral vasculature although differentiation of 

resident microglia cannot be definitively excluded. Macrophages found within the 

parenchyma of diffusely injured loci without overt contusion or related hemorrhage 

suggests the potential for coordinated movement through an injury-induced, transiently 

perturbed BBB (Hartl et al., 1997a; Hartl et al., 1997b) as suggested by post-injury 

interstitial albumin immunoreactivity (Cortez et al., 1989; Schmidt and Grady, 1993; 

Barzo et al., 1996; Baskaya et al., 1997). Although the precise origins of DBI-mediated 

parenchymal macrophages cannot be definitively determined from this study, these 
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findings illustrate the importance of using multiple DBI models in future studies to 

assess leukocyte localization following trauma. Studies using pre-injury labeled 

peripheral blood monocytes andfor bone marrow chimeric animals may provide insight 

into the relative contribution and distribution of exogenous versus endogenous 

macrophage populations following DBI (Popovich and Hickey, 2001; Ladeby et al., 

2005). 

While numerous macrophages were observed in isolation, other macrophages 

approximated somata of perisomatically axotomized neurons, particularly within the 

neocortex by 24 hrs post-injury. EM evaluation of macrophage - soma interactions 

revealed macrophages encompassing large components of the somatic membrane, 

having adopted rounded or semi-circular morphology to approximate the membrane, 

potentially participating in somatic bouton disruption and loss. This association was 

reminiscent of the phenomenon in which regenerating neurons undergo inflammatory- 

mediated deafferentation of synaptic terminals which confers an adaptive advantage for 

potential synaptic reorganization, known as synaptic stripping (Blinzinger and 

Kreutzberg, 1968). Using facial nerve primary axotomy, a model quite dissimilar from 

DBI-mediated secondary axotomy, microglia, macrophages, and peripheral leukocytes 

all responded to initial neuronal degeneration prior to regeneration. Microglia were 

specifically implicated in separating boutons from neuronal cell bodies (Kreutzberg, 

1995; Graeber et al., 1998; Raivich et al., 1998). Given the suggestion of somatic 

reorganization and repair following DBI-mediated axotomy (Singleton et al., 2002), 

macrophage - somatic associations seem plausible. Although microglia were not 
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recognized approximating somatic membranes following DBI, neuronal mechanisms 

responsible for immune cell recruitment following trauma may be different given the 

primary versus secondary nature of axotomy. Perhaps mechanisms stimulated by 

primary axotomy favor microglial recruitment whereas mechanisms following 

secondary axotomy preferentially recruit macrophages. However, it is also possible that 

these macrophages may have differentiated from perineuronal microglia that 

approximate somata under non-pathologic conditions (Peters et al., 199 1). 

At this time, it is unclear whether these macrophages originated from the 

peripheral vasculature or differentiated from prepositioned microglia. Nonetheless, 

close approximation of the macrophage to the somatic membrane is strongly suggestive 

of immune cell - neuron crosstalk mechanisms. To date, several molecules released by 

neurons following trauma have been implicated in immune cell activation and 

recruitment (Polazzi and Contestabile, 2002). The severity of neuronal injury may 

dictate the nature of these signals with reversible injury leading to immune cell- 

mediated trophic support while irreversible injury may enhance immune cell-derived 

neurotoxic-mediated cell death (Streit et al., 1999). Given the suggestion of neuronal 

somatic reorganization and repair as well as the absence of widespread necrotic 

neuronal cell death following moderate DBI (Singleton et al., 2002), these observations 

support potential immune cell - neuron trophic interactions. Studies in our laboratory 

are currently examining the long-term fate of neurons to provide additional insight into 

neuronal signaling responses and outcomes following DBI. 
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Following TBI, immune cell activation is driven primarily by neuronal 

degeneration (Kreutzberg, 1996; Streit, 2000). However, the lack of DBI-mediated cell 

death in the cFPI model (Singleton et al., 2002) suggests that ongoing microglial / 

macrophage activation (up to 28 d in the current communication) may be supported by 

DBI-mediated secondary pathologies such as cellular membrane perturbation andor 

Wallerian degeneration leading to synaptic disruption. Membrane perturbation may 

stimulate cytokine / chemokine release by injured neurons andor surrounding glia 

(Aloisi, 2001; Hansson and Ronnback, 2003). The post-injury release of these 

molecules may then contribute to sustained immune cell activation long after the initial 

injury stimulus has dissipated (Bajetto et al., 2002; Babcock et al., 2003; Gentleman et 

al., 2004; Kim and de Vellis, 2005). Similarly, Wallerian change and related 

deafferentation are known stimuli for immune cell activation. Given the rapid Wallerian 

degeneration that takes place following DBI-mediated perisomatic TAI outlined in 

Chapter 2, the presence of axonal breakdown products may also contribute to prolonged 

activation. Studies by Dong and colleagues, using a dissimilar entorhinal cortex lesion 

paradigm involving transection of afferent fibers to the hippocampus, noted microglial 

activation within denervated portions of the hippocampus as late as fifteen days post- 

injury (Dong et al., 2004; Dong et al., 2005; Dong et al., 2006). In the current 

communication, sustained macrophage activation was observed along the hippocampal 

dentate gyms granule cell layer, corresponding to sites of synaptic input and consistent 

with previous findings following experimental DBI (Carbonell and Grady, 1999). As 

such, deafferentation may trigger supplemental neuronal injury response mechanisms 
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that continue to signal immune cells originally activated by stimulatory molecules 

released during the initial traumatic episode (Aldskogius et al., 1999; Bruce-Keller, 

1999). Although precise identification of secondary injury mechanisms leading to 

prolonged immune cell activation remains elusive, persistent post-traumatic microglial / 

macrophage activation has implications for understanding neuronal plasticity and 

potential recovery following trauma (Banati, 2002; Banati, 2003). 

The current communication's findings may also have implications for 

neuropathological evaluation of TBI. Microglial clustering in post-mortem histological 

neuropathology is currently used as a diagnostic indicator of TBI-related pathobiology 

that includes axotomy (Adams et al., 1989). These clusters or nodules have been 

documented with survival times of at least seven weeks post-injury (Povlishock and 

Becker, 1985) with more recent evidence of clustering between ten and fifteen days 

post-injury (Geddes et al., 1997; Oehmichen et al., 1999). In the current 

communication, only isolated microglial aggregations occurred at 28 d post-injury. 

Further, LM morphology of these aggregations revealed dissimilarities between these 

aggregations and those clusters / nodules involved in microglial-mediated 

neuronophagia. Given the absence of focal pathology within DBI-mediated TAI- 

containing loci, previous descriptions of microglial clusters may be indicative of focal 

pathology, in which necrotic cell death andor hemorrhagic tissue damage triggers 

microglial recruitment via chemotactic signaling molecules. In contrast, the lack of 

neuronal cell death and the absence of overt tissue damage associated with moderate 

DBI may explain why microglial clustering does not take place, at least within the time 
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frame of the current communication. Our findings suggest that histopathological and 

forensic identifications of TBI that rely on surrogate markers of neuronal injury, such as 

microglial clustering, may overlook and thus underestimate more subtle forms of 

diffuse pathology. Accordingly, TBI histopathological evaluation may be expanded to 

address microglial / macrophage immunoreactive findings indicative of DBI, namely 

early and persistent microglial activation and macrophage localization within diffuse 

brain regions without requisite cluster / nodule formation. 
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Chapter 4 

GENERAL DISCUSSION 

The purpose of this section is not to reiterate material provided in the previous 

discussions related to Chapters 2 and 3. Rather the goal here is to explore general 

concepts pertinent to the findings of this dissertation as a whole. A brief synopsis is 

provided to review the most prominent findings related to the study of DBI-mediated 

perisomatic TAI and the related neuroinflammatory response thereby providing a 

foundation for future investigation. 

SYNOPSIS 

To complete this dissertation on TAI pathogenesis within the perisomatic 

domain and the related microglia 1 macrophage responses to DBI, a midlinelcentral FPI 

model of moderate severity was utilized. This model provided a reliable and 

reproducible axonal pathology that was localized to a specific distance from the soma of 

origin and was found within specific anatomical loci. Additionally, diffuse TAI was 

observed without evidence of overt focal contusions andlor hemorrhagic-mediated 

tissue damage. Using immunohistochemical techniques, antibodies to the anterogradely 

transported P-APP were used to mark the site of focally impaired axonal transport 
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following injury, a key characteristic of TAI pathology. The spatiotemporal 

progression, ultrastructural pathology, and permeability alteration of this injury site as 

well as findings related to the soma and proximal / distal segments were characterized 

in Chapter 2 while microglia / macrophage responses to DBI and its associated 

pathology were explored in Chapter 3. 

As detailed in Chapter 2, TAI within the perisomatic domain resulted in an ultra- 

rapid secondary axotomy and Wallerian degeneration. Investigation of perisomatic TAI 

was prompted by an initial study of the related somatic response to secondary 

perisomatic axotomy. Despite axonal disconnection within 4.0 - 60 pm of the sustaining 

soma, DBI-mediated traumatically injured neurons did not progress to rapid cell death 

(Singleton et al., 2002). This observation, which contrasted previous studies of neuronal 

death following axonal transection within a similar distance from the soma, suggested 

that the manner in which perisomatic axotomy took place afforded some form of 

somatic protection following axonal trauma. It was speculated that the time frame over 

which secondary axotomy evolved (i.e. within several hours following DBI) was an 

important factor. However, as reported in this dissertation, as early as 15 - 30 min 

following DBI, perisomatically injured axons had lost continuity with their downstream 

segments while the related soma and proximal axonal segment showed no overt signs of 

pathology. Ultrastructural analysis of the site of axonal injury revealed neurofilament 

disorganization, microtubule loss, mitochondria1 pathology, and pooling of intra-axonal 

organelles. These observations were comparable to those documented in previous 

studies of TAI within long tract axons of the brainstem (Pettus et al., 1994; Pettus and 
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Povlishock, 1996). The related distal axonal segment ultrastructure was persevered at 

this time point; however, by 60 - 180 min post-injury, the initial stages of Wallerian 

degeneration were apparent. The site of axonal swelling and disconnection was 

independent of overt alterations in axolemmal permeability. Taken together, these 

observations suggest that maintenance of axonal integrity rather than speed of 

disconnection is more important in providing somatic protection following TAI. 

The neuroinflammatory response to DBI and its related pathological sequelae as 

outlined in Chapter 2 was the focus of Chapter 3. The immune response to TBI involves 

both resident microglia as well as peripheral blood monocytes recruited from the 

surrounding vasculature. Microglia I macrophage responses to DBI were characterized 

using antibodies to immune cell surface proteins in conjunction with TAI labeling to 

visualize diffusely injured brain loci uncomplicated by focal pathology. Given the 

rapidity of TAI pathology, it was assumed that immune cells would rapidly target sites 

of axotomy. At 6 - 24 hrs following DBI, scattered LM microglial activation was 

observed within injured loci while other scattered microglia within adjoining non-TAI 

containing regions maintained a resting phenotype. DBI-mediated activated microglia 

phenotype included a rounded cell body, decreased process ramification, and enhanced 

immunoreactivity that persisted until at least 28 d post-injury. Comprehensive EM 

evaluation did not reveal specific microglia - neuron associations within the first seven 

days post-injury, rather simply an initial generalized activation response to trauma. 

Microglial-mediated phagocytosis of axonal debris followed at subsequent post-injury 

time points without evidence of clustering I nodule formation. Macrophages were also 
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observed within injured neocortical and hippocampal loci at 6 hrs post-injury with 

recognition in the thalamus at 24 hrs post-injury, again with little to no 

immunoreactivity within adjoining non-TAI containing regions. These cells appeared 

within the parenchyma despite no evidence of focal contusion, hemorrhage, or tissue 

disruption. EM evaluation revealed a spatiotemporal relationship to TAI comparable to 

microglial findings. However, select macrophages approximated somata of 

perisomatically axotomized neurons within 24 hrs post-injury although their origin from 

either peripheral blood monocyte or microglial differentiation could not be definitively 

determined. Despite this association, there was no evidence of somatic engulfment or 

phagocytic activity. Macrophage immunoreactivity within injured loci persisted at 28 d 

post-injury while adjoining regions remained devoid of immunoreactivity. These 

findings suggest that neuroinflammatory responses to DBI are distinct from those 

related to focal TBI and that TBI histological evaluation that relies on markers such as 

microglial clustering may inadvertently overlook and thus underestimate the extent of 

DBI-mediated axonal pathology. 

INHERENT DIFFICULTIES IN STUDYING DBI-MEDIATED TAI 

As the work detailed in this dissertation indicates, TAI in the perisomatic 

domain is characterized by ultra-rapid secondary axotomy and Wallerian degeneration 

and is accompanied by reactive microglia 1 macrophage responses. To study TAI and its 

resultant consequences within the context of DBI, a reliable and reproducible injury 

model is necessary. Rodent FPI (Dixon et al., 1987) provides a clinically relevant model 
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of human diffuse TBI. Descriptive characterizations of brain pathology generated by the 

central and lateral 1 parasagittal versions of this model include physiological, metabolic, 

and cytological pathology as well as hemorrhagic and related ischemic damage, BBB 

disruption, and alterations of behavioral and cognitive outcome measures (McIntosh et 

al., 1987; Dixon et al., 1988; Mchtosh et al., 1989; Hicks et al., 1996; Thomas et al., 

2000; Thompson et al., 2005). Focusing on axonal pathology, the nature of DBI is such 

that traumatically injured axons are found among other CNS constituents that 

demonstrate little or no pathology. Given that midlinelcentral FPI of moderate severity 

generates TAI within diffuse brain regions, among other fibers and cells exhibiting no 

distinct pathological alterations, and without evidence of overt focal pathology, this 

injury model mimics comparable pathologies described in mild to moderate human DBI 

(Adams, 1992; Graham, 1996). 

Although DBI-mediated TAI can be generated in specific anatomical loci using 

FPI, study of its cellular and molecular pathologies is confounded by the nature of this 

injury. TAI is found scattered throughout the brain as well as interspersed within normal 

CNS constituents making examination of injured axons difficult. Although 

identification of microscopic diffuse TAI has been facilitated through the use of 

antibodies targeting specific axonal pathological cascades or end-products, isolation of 

injured axons for molecular analysis is a daunting task given the likelihood of the 

concomitant collection of axons and brain tissue immediately adjacent to the pathology. 

In contrast to diffuse injury, the highly concentrated and homogenous nature of focal 

brain injury lends itself to a variety of experimental techniques to examine the cellular 
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response to injury. In focal injury, an injury nidus may be reliably located and isolated 

from related tissue allowing for numerous analyses to study cellular responses. 

Despite these inherent limitations, the study of DAI, and its experimental 

equivalent TAI, remains an important scientific objective. With DAI as the predominant 

mechanism of injury for 40 - 50 percent of TI31 hospital admissions and, as such, a 

major contributor to the morbidity and mortality associated with TBI (Meythaler et al., 

2001), continued basic science research into TAI pathobiology is needed to provide 

insights into mechanisms of axonal damage and to discern potential targets for 

therapeutic treatment options. Thus, translational research between basic science and 

clinical arenas is vital; however, the application of basic science knowledge to the 

clinical realm must be carefully measured. Inevitably, it is the collective brain response 

to diffuse injury that ultimately dictates axonal pathology and the related inflammatory 

responses. 

MECHANISMS OF ULTRA-RAPID TAI PATHOLOGY 

Given the precise anatomical localization of injury as well as the related 

secondary axotomy and Wallerian degeneration, DBI-mediated perisomatic TAI 

pathology offers a unique opportunity to study axonal injury mechanisms and to explore 

pathobiological consequences of neuron - glial cell interactions and neuronal pathway 

deafferentation within the context of TBI. As DBI relates to axonal injury mechanisms, 

previous studies from our laboratory and others implicate calpain and caspase-mediated 

cytoskeletal proteolysis within minutes to hours following TAI (Saatman et al., 1996; 
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Buki et al., 1999; Buki et al., 2000; Saatman et al., 2003) with others reporting similar 

cytoskeletal pathology within this time frame (Gennarelli et al., 1993; Jafari et al., 1997; 

Maxwell and Graham, 1997; Jafari et al., 1998). The spatiotemporal progression of 

thalamic perisomatic TAI is comparable to studies of experimental diffuse neuronal 

injury using fluid percussion which include thalamic neuronal damage as early as 10 

rnin following injury (Dixon et al., 1987; Hicks et al., 1996; Bramlett et al., 1997; Sato 

et al., 2001). However, despite the abundance of information regarding TAI 

pathogenesis, the precise subcellular mechanisms of perisomatic TAI pathology remain 

elusive. 

A variety of antibodies to proteolytic proteins and degradation products 

implicated in TAI pathobiology have been used to attempt to describe mechanisms of 

injury within the perisomatic domain. However, markers of calpain and caspase 

activation as well as spectrin proteolytic products have met with little success in this 

region (unpublished observations). These same antibodies have been successful in 

determining mechanisms of brainstem TAI pathology suggesting that axonal size may 

be a factor not only in antibody binding affinity but also in potential mechanisms of 

pathology. Large caliber axons found within ascending and descending white matter 

tracts of the brainstem offer a larger target for antibody binding than the smaller caliber 

axons of the thalamus. Brainstem axons are also myelinated. Given that myelination 

confers additional strength to the axon, more severe diffuse injury forces stimulating the 

above mentioned mechanisms may be required to generate pathology within this region. 

These ideas are contrasted by the unmyelinated initial segment and thinly myelinated 
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internodal segment in which perisomatic TAI pathology is observed, perhaps making 

these segments preferentially vulnerable to lower magnitude injury forces. As outlined 

in Chapter 2, perisomatic injury is localized to the grey - white matter interface, an area 

that is selectively vulnerable to shear and tensile forces (Smith et al., 1997; Meythaler et 

al., 2001). It is possible that potentially less severe forces are needed to generate 

perisomatic TAI and may result in a more rapid initiation of pathological cascades 

following injury. Similarly, lack of tracer flooding at the site of perisomatic secondary 

axotomy suggests either minimal or no pathological influx of extracellular ions at this 

site. Perhaps influx at this site is more insidious and stimulates the afore mentioned 

pathological cascades albeit at levels insufficiently recognized by antibody affinity. 

Although the acute mechanisms of perisomatic TAI pathogenesis remain 

elusive, we continue to evaluate the long-term implications of perisomatic TAI and 

related axotomy. Ongoing stereological studies from our laboratory suggest neuronal 

somatic shrinkage at 7 d following moderate cFPI without evidence of widespread 

neuronal cell death with similar observations out to 28 d post-injury (article in 

preparation). While mechanisms for neuronal shrinkage are currently being evaluated, 

previous studies of perisomatic TAI indicate that injured neurons are terminal 

deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling (TUNEL) 

negative and demonstrate multiple independent injury phenotypes (Singleton et al., 

2002; Singleton and Povlishock, 2004). Recently, our laboratory has studied DBI- 

mediated neuronal mechanoporation (Farkas et a]., 2006). Perhaps non-lethal disruption 

of the neuronal membrane leads to ionic dysregulation creating fluid shifts which 
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ultimately lead to cellular shrinkage. Taken together, these observations have important 

clinical implications for head injured patients in that the initiation of DAI pathology 

may take place more rapidly than currently believed. 

RAPIDITY OF AXOTOMY 

The rapidity at which perisomatically injured neurons undergo secondary 

axotomy and consequent Wallerian change is disturbing given the relevance of DAI to 

human head injury and therapeutic modalities aimed at prevention 1 attenuation of 

axonal damage following TBI. Studies of human DAI suggest secondary axotomy 

pathogenesis evolves over approximately 12 hrs (Grady et al., 1993; Christman et al., 

1994; Povlishock and Christman, 1995) while experimental paradigms indicate a more 

accelerated time frame, approximately 4 - 6 hrs (Pettus et al., 1994; Pettus and 

Povlishock, 1996). However, as outlined in Chapter 2, secondary axotomy following 

DBI-mediated perisomatic TAI was observed as early as 15 - 30 min post-injury with 

consequent Wallerian degeneration noted soon thereafter. Given that the time delay 

between initial trauma and axonal disconnection within the perisomatic domain is 

shorter than times observed within previous studies of TAI-mediated secondary 

axotomy, study of rapid and therapeutically relevant interventions becomes even more 

significant. 

The phenomenon of DBI-mediated perisomatic TAI remains novel with only 

limited study of this unique pathobiology to date (Singleton et al., 2002; Singleton and 

Povlishock, 2004). Although ultra-rapid secondary axotomy, as discussed in Chapter 2, 
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was also noted within the neocortex and hippocampus, observations for this dissertation 

were confined to thalamic nuclei with the inference that these findings could be 

extended to neocortical and hippocampal pathology. However, confirmation of identical 

neocortical and hippocampal secondary axotomy pathology requires further 

investigation. The clinical relevance of these thalamic studies is supported by 

documentation of TBI-mediated thalamic neuronal damage in a variety of patients 

whose outcomes range from moderately disabled to vegetative (Anderson et al., 1996; 

Adams et al., 2000; Uzan et al., 2003; Maxwell et al., 2004) as well as studies of post- 

injury cognitive function in humans and experimental animals (Terayama et al., 1991; 

Pierce et al., 1998; Ding et al., 2001). 

In a related fashion, relatively little information exists concerning anterograde / 

Wallerian degeneration following TBI. Studies of CNS Wallerian change come mainly 

from spinal cord injury (Becerra et al., 1995; Buss et al., 2004) or from experimental in 

vitro transection of dorsal root ganglia (Sievers et al., 2003). Classic descriptions of 

Wallerian degeneration in humans suggest a pathology that evolves over months and 

persists for years following injury (Strich, 1968; Becerra et al., 1995; Buss et al., 2004) 

while experimental models accelerate the time frame for pathological change (Maxwell 

et al., 2003). The discovery of a mutant mouse strain with slow Wallerian degeneration 

has helped to provide additional insight into this pathological process by allowing for 

examination of Wallerian change over longer post-injury time periods (Perry et al., 

1991). A more recent study by Maxwell and colleagues reported ultrastructural findings 

of Wallerian change at 24 hrs post-injury using an optic nerve stretch injury model of 
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TAI (Maxwell et a]., 2003). However, as outlined in Chapter 2, DBI-mediated 

Wallerian degeneration within 60 - 180 min post-injury and its relationship to ultra- 

rapid secondary axotomy are unique observations in that the speed at which these 

events take place is significantly faster than previously recognized. 

The speed of these events has important implications for therapeutic 

interventions aimed at attenuation 1 elimination of their pathogenesis. To date, 

numerous studies attenuating TAI in animal models have met with limited results in 

clinical trials (Narayan et al., 2002). Although TAI pathogenesis is accelerated in 

animals relative to the human condition, our findings suggest that despite early 

intervention following injury (- 15 min) there will be irreversible axonal damage 

leading to neuronal pathway degeneration. Providing complete neuroprotection 

following TBI may be an unrealistic expectation; nonetheless, therapeutic intervention 

remains an important component of attenuating more vigorous neuronal pathology. 

Apparently "uninjured" axons may have a delayed response to trauma given the 

progressive increase in injured axon and reactive swelling numbers over time. 

Recognition of injured axons with apparent normal morphology remains an important 

TBI research objective in that these axons appear amenable to therapeutic intervention 

and may be rescued from their impending demise. 

NEURONAL SIGNALING MODULATING MICROGLIAL ACTIVITY FOLLOWING 
TRAUMATIC BRAIN INJURY 

It would seem reasonable and rational that neurons communicate with 

surrounding microglia to promote a homeostatic environment during periods of rest 
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while at the same time possessing the capacity to stimulate microglial activation 

following traumatic insult. Several lines of evidence supporting microglia - neuron 

crosstalk are provided by both in vivo and in vitro studies (Aldskogius and Kozlova, 

1998; Polazzi and Contestabile, 2002). During periods of inactivity, microglia 

demonstrate a heterogeneous distribution among different regions of the adult rat brain 

(Savchenko et al., 2000). Given observations that microglia within different brain 

regions demonstrate slightly differing morphologies, this suggests that microglial 

activation may be affected by localization and interactions with various cell types 

throughout the brain (Polazzi and Contestabile, 2002). For example, when CD200, a 

membrane glycoprotein expressed by neurons and whose receptor is found on 

microglia, was absent, microglia showed an activated phenotype and formed aggregates 

expressing inflammatory molecules (Hoek et al., 2000). This suggests a neuronal 

mechanism of microglial downregulation of immune function. Similarly, when 

microglial cultures were exposed to neuron-conditioned media, differentiating neurons 

released factor(s) capable of inducing apoptosis of activated, but not unstimulated, 

microglia suggesting a neuronal-mediated regulation of microglial activation which 

serves as a protective mechanism against an overactive inflammatory response (Polazzi 

and Contestabile, 2003). 

Evidence also exists for neuronal-mediated mechanisms of microglial activation 

following traumatic injury. When neurons die, independent of the specific cause of 

death, the microglial reaction is stereotyped and consists of quick transformation into an 

activated phenotype (Streit et al., 1999; Streit, 2000). Several studies have documented 
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the release of pro-inflammatory agents (e.g. TNF-a, IL- 1, IL-6) and trophic factors by 

activated microglia in response to neuronal death (Bartholdi and Schwab, 1997; Toku et 

al., 1998; Batchelor et al., 1999; Pearson et al., 1999; Stoll et al., 2002). The scripted 

microglial response to neuronal cell death is one of motility to the injury site followed 

by alterations in morphology including retraction of processes, proliferation, and 

increased membrane expression of surface molecules such as complement type 3 

receptor (CR3) and major histocompatibility complex class I1 (MHC Class 11) antigen. 

Microglia then differentiate into macrophages only in the presence of extensive 

neuronal degeneration (Kreutzberg, 1996). In a related response, microglia are also 

capable of recruiting monocytes and lymphocytes from the blood stream (Aloisi, 2001). 

Although these findings suggest that microglial activation may aggravate ongoing 

inflammatory responses, microglia have also been shown to secrete anti-inflammatory 

molecules such as TGF-p and IL-10 (Aloisi, 2001) suggesting a dichotomy of both 

microglial-mediated neuropathological and neuroprotective functions. Therefore, the 

promotion of neuronal survival or exacerbation of neuronal death may depend primarily 

on the nature of the neuronal signals responsible for microglial activation which are 

released following trauma (Streit et al., 1999; Polazzi and Contestabile, 2002). 

Although cytokines responsible for microglial activation have been recognized, 

their mechanisms of action and the long-term consequences for microglial activation 

remain poorly understood. Emerging literature on the subject of microglial activation 

suggests candidate genes and unique morphological characteristics may also be 

responsible. One such gene is microglia response factor (mrf-1) which encodes a 



www.manaraa.com

148 

calcium binding protein that does not appear to play a role in phagocytic activity and is 

upregulated following neuronal injury (Tanaka et al., 1998). Given that mrf-1 is not 

upregulated by phagocytosis, induction may require cell-cell contact between microglia 

and degenerating neurons and/or the release by damaged neurons of signals capable of 

altering gene expression (Polazzi and Contestabile, 2002). Similarly, microglial cells 

have a unique pattern of potassium channels and the possibility of increased 

extracellular potassium levels around injured neurons inducing their activation is 

supported by an in vivo spreading depression model of potassium chloride that induced 

microglial activation (Gehrmann et al., 1993). 

Injured neurons may also regulate microglial activation through coordinated 

release or leakage of stimulatory molecules such as ATP (Walz et al., 1993). Several 

studies have shown that ATP stimulates microglia to release biologically active 

substances such as IL-1P (Sanz and Di Virgilio, 2000), TNF-a (Hide et al., 2000), nitric 

oxide (Ohtani et al., 2000), and IL-6 (Shigemoto-Mogami et al., 2001) as well as induce 

microglial chemotaxis (Honda et al., 2001). More recent in vivo studies have shown 

microglial processes to autonomously converge on focal injury sites induced by laser 

ablation with ATP release from damaged tissue implicated as a key mediator of this 

response (Davalos et al., 2005; Nimmerjahn et al., 2005). Additionally, matrix 

metalloproteinase-3 released by apoptotic neuronal cells has recently been shown to 

activate microglia in vitro (Kim et al., 2005). Additional mediator candidates include 

platelet-activating factor (PAF), a phospholipid that plays various roles in neuronal 

function and whose receptor is expressed in microglial cells (Mori et al., 1996; Aihara 
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et al., 2000) as well as neurotransmitters (e.g. glutamate) released by neurons which 

may signal adjacent microglia via receptor-based interactions (Noda et al., 2000). 

Finally, a recently identified chemokine, fractalkine, appears to function as an important 

signaling molecule between neurons and microglia (Mizuno et al., 2003). The specific 

receptor, CX3CR1, is found primarily on microglia suggesting an important signaling 

role for this molecule (Nishiyori et al., 1998). Similarly, the cysteine-cysteine 

chemokine receptor 5, which may be stimulated by a number of biologically active 

molecules, has recently been shown to play a role in microglial activation and motility 

following focal stab wounding (Carbonell et al., 2005). 

Taken together, these studies strongly suggest neuronal injury-mediated 

microglial signaling within the context of normal brain function and during the period 

immediately following traumatic insult. The list of microglial activators is sure to grow 

as our understanding of the neuronal response to injury continues to evolve. 

Additionally, associated glial responses from cells such as astrocytes are also involved 

in microglial activation via the release of various stimulatory molecules and thus 

contribute to neuroinflammatory responses (Aldskogius and Kozlova, 1998; Shih et al., 

2006). Along these lines, our ability to manipulate these signaling molecules 

individually or in combination may offer an opportunity to intervene therapeutically 

with the hope that regulation of neuroinflammatory responses may promote 

neuroprotective strategies while limiting unintended neuropathological consequences. 
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CYTOKINES FOLLOWING TRAUMATIC BRAIN INJURY 

Continued studies are needed to discern the chemotactic factors involved in 

leukocyte recruitment to DBI loci although cytokines and chemokines generated by 

glial cells have been implicated in this process (Bajetto et al., 2002; Babcock et al., 

2003). Cytokines are usually released within minutes after an appropriate stimulus 

because they are stored intracellularly as precursor molecules and eventually modified 

into active molecules. Following activation, microglia may secrete pro-inflammatory 

cytokines, most notably interleukin 1 (IL-1) (Gentleman et al., 2004). IL-1 is 

synthesized by microglia following experimental brain injury and can be found in 

microglia close to APP immunoreactive cells and neurites in head-injured patients 

(Fagan and Gage, 1990; Taupin et al., 1993; Griffin et al., 1994). Other cytokines 

elevated in the brain following traumatic injury are IL-6 and tumor necrosis factor alpha 

(TNF-a) (Goodman et al., 1990; McClain et al., 1991; Shohami et al., 1999). Both IL-1 

and TNF-a are capable of altering vascular permeability and could facilitate 

macrophage entry into parenchymal areas from which microglia secrete these molecules 

thus facilitating macrophage interactions with injured neurons (Beynon et al., 1993; 

Burke-Gaffney and Keenan, 1993). However, Soares and colleagues suggest that 

inflammatory leukocyte recruitment and diffuse neuronal degeneration are separate 

pathological processes resulting from TBI. Following lateral FPI, neuronal degeneration 

took place within deep diencephalic structures in the absence of IgG extravasation and 

neutrophil infiltration (Soares et al., 1995). Taken together, these data illustrate a 

discrepancy as to the importance of leukocyte recruitment in response to neuronal 
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degeneration following trauma and highlight the importance of continued research into 

cytokine / chemokine mechanisms of action. 

Similar discrepancies exists concerning activation of intracellular adhesion 

molecule 1 (ICAM-I), which is pivotal in mediating the extravasation of leukocytes 

across cerebral vessels, as well as with chemokines associated with leukocyte 

recruitment within the context of TBI (Morganti-Kossmann et al., 2002). ICAM-1 

expression is increased in the cerebral vessels of rats with diffuse axonal injury, despite 

the absence of neutrophils in the brain parenchyma. Similarly, monocyte chemotactive 

protein 1 (MCP-1; acting on macrophages) but not macrophage inflammatory protein 2 

(MIP-2; acting on neutrophils) was elevated in these animals further supporting these 

findings (Rancan et al., 2001). However, both chemokines were elevated following 

focal brain injury, corroborating the finding of neutrophil and macrophage 

accumulation within cortical contusions (Otto et al., 2001). These data highlight 

heterogeneous inflammatory responses within the contexts of focal and diffuse TBI and 

illustrate the complexity of molecular interactions taking place during the secondary 

phases of injury. The roles of cytokines and chemotactic factors in leukocyte 

recruitment as well as in glial activation following DBI remain the focus of ongoing 

studies. 

NEUROINFLAMMA TORY CONCLUSIONS 

While dissimilar from DBI pathology which leads to secondary axotomy, 

studies of inflammatory responses to primary axotomy provide a starting point to 
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examine immune cell reactivity to traumatic injury. Facial nerve axotomy via 

transection leads to microglial activation within hours after injury with microglia 

remaining in the area for at least two weeks. Transection leads to perineuronal 

ensheathment of neurons by microglia which accomplishes two neuroprotective actions: 

removal of excitatory input through displacement of afferent synapses known as 

synaptic stripping (Blinzinger and Kreutzberg, 1968) and close physical proximity of 

axotomized neurons to microglial cells which may facilitate targeted delivery of growth 

and/or neurotrophic factors promoting regeneration (Streit, 2002). Microglia are thought 

to be essential components of the neuronal regenerative response, a response which is 

blunted within the CNS by a variety of factors, based on the fact that transection- 

mediated axotomy of rubrospinal tract neurons in the cervical spinal cord, that does not 

result in regeneration, elicits only minimal microglial activation (Barron et al., 1990; 

Tseng et al., 1996). Given the diffuse nature of TAI which leads to comparatively less 

pathology than is seen following focal brain injury and/or axonal transection paradigms, 

both of which elicit cell death, lack of specific DBI-mediated microglia - axonal 

interactions during the acute post-injury phases appears reasonable. It is not surprising 

that DBI-mediated perisomatic TAI, which demonstrates rapid axolemmal closure as 

discussed in Chapter 2, does not elicit robust microglial / macrophage activation 

targeting the site of injury. On the other hand, our data do indicate macrophage 

localization to somata of injured neurons with evidence of bouton disruption. However, 

the lack of cell death does not allow for a massive inflammatory response given that the 

primary trigger for such a response (i.e. cell death) is absent. 
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Ultimately, the balance between neuroprotection and neuropathology within the 

context of TBI-induced neuroinflammation is delicate. Inflammatory cell recruitment, 

activation, and repair mechanisms are important components to preserve remaining 

neuronal structure and function and to protect the brain from potentially more serious 

consequences. However, the neuroprotective response must be tightly regulated to 

prevent unintended and deleterious consequences resulting in damage to adjacent 

uninjured tissue. Appropriate responses to injury must be tapered by mechanisms of 

downregulation following completion of repair processes. These mechanisms may 

include migration of inflammatory cells away from injury sites and/or immune cell 

apoptosis (Vela et al., 2002). Otherwise, an unregulated inflammatory response will 

ultimately promote increased neuronal injury that will stimulate continued and/or de 

novo inflammatory responses creating vicious cycles of neuronal injury followed by 

further neuroinflammation leading to even greater neuronal injury. Unfortunately, our 

current understanding of these regulatory mechanisms is incomplete and merits 

continued investigation. Through future studies, our comprehension of the basic science 

mechanisms behind neuroinflammation will lead to therapeutic interventions targeting 

various steps in the inflammatory cascade, ultimately creating a process that may be 

manipulated and hence regulated to enhance neuroprotection while limiting unwanted 

neuropathological consequences. 
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FUTURE STUDIES 

While this dissertation offers new insights into DBI and its associated 

pathologies, much work still remains to fully comprehend this pathological condition. 

The anatomical reproducibility of perisomatic TAI within the mediodorsal neocortex, 

hippocampal dentate gyrus, and dorsolateral thalamus using the midlinelcentral FPI 

model of moderate severity combined with an established timeline for perisomatic TAI 

and subsequent secondary axotomy within this cytoarchitectural region provides several 

possibilities for future investigations. First, regional specificity of perisomatic TAI 

allows for thorough examination of the consequent deafferentation associated with 

axotomy, Wallerian change, and synaptic disruption. By focusing on the anatomical 

endpoints to which injured axons project, the impact of DBI-mediated secondary 

axotomy on downstream synaptic terminals may be examined. Through collaborative 

efforts with investigators at other university, we are beginning to examine regional 

neuronal injury responses to diffuse TBI via Western blot analyses of antibodies 

targeting pre (e.g. synaptophysin, synaptotagmin) and post-synaptic (e.g. PSD-95, PSD- 

93) elements as well as axonal constituents (e.g. myelin breakdown products). 

Following characterization of these injured loci, the anatomical areas to which these 

injured axons project will then be examined by Western blot and LM I EM 

immunohistochemistry to determine the mechanisms and consequences of DBI- 

mediated deafferentation. Although this effort is in its early stages, initial results 

indicate a coordinated temporal response to diffuse TAI with elevations in myelin 
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breakdown products followed by synaptic breakdown products (unpublished 

observations). 

In addition to the synaptic fate associated with secondary axotomy, 

characterization of the axonal disconnection site also requires continued investigation. 

As reported in Chapter 2, sites of perisomatic axotomy were impermeable to pre-injury 

administered 10 kDa dextran. While this finding was unexpected and suggested either 

axolemmal sealing prior to disconnection or ultra-rapid axolemmal closure following 

axotomy, these hypotheses require additional testing to provide more substantive 

evidence supporting mechanisms of membrane resealing I repair. Use of a smaller 

molecular weight dextran molecule may provide insight into potential size disruptions 

within the axolemma. Perhaps disruption sizes are such that they exclude the 10 kDa 

dextran but may be permeable to smaller molecular weight species. Similarly, more 

refined EM studies may provide insight into membranous cytoskeleton structural 

dynamics at the point of disconnection. Understanding neuronal membrane disruption 

and resealing is important to designing rational therapeutic strategies aimed at either 

repairing the membrane itself or targeting ongoing pathologies via intra-neuronal 

delivery of pharmacological agents during the post-traumatic period. 

From the standpoint of DBI-mediated neuroinflammatory responses, initial 

characterization was offered in Chapter 3 although these findings are only preliminary 

descriptions of this complex biological process. The midlinelcentral FPI model elicits 

diffuse TAI within specific anatomical loci that are uncomplicated by elements of focal 

injury. This offers a unique opportunity to model DBI without underlying focal injury 
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components that may confound inflammatory cell analyses. One question that arose 

during evaluation of macrophage immunoreactivity is from where do these cells 

originate? To date, the precise origin(s) for brain macrophages following trauma 

remains elusive although the nature of the injury may dictate the relative contributions 

of endogenous and exogenous cells. Macrophages may differentiate from endogenous 

microglia following activation, may be recruited from the peripheral blood as 

monocytes and then differentiate upon arrival at the injury site, or both of these 

mechanisms may be at work simultaneously. Two experimental strategies could be used 

to study this question. First, bone marrow chimeric animals may be utilized based on 

their unique cellular properties. While microglia enter the brain during embryonic 

development and self-renew, monocytes originate from bone marrow throughout life. 

Monocytes derived from chimeric bone marrow will have unique protein characteristics 

distinguishing them from endogenous brain cell populations. Following DBI and 

macrophage differentiation, antibodies targeting the unique chimeric phenotype could 

provide evidence of either immunopositive bone marrow-derived monocyte entry, 

immunonegative microglial differentiation, or a combination of exogenous and 

endogenous cells. If both macrophage lineages are present, these studies will still 

provide valuable information as to the relative contributions made by each lineage as 

well as lineage-dependent localization following injury. In a related approach, pre- 

injury labeling of circulating blood monocytes with a fluorescent marker could also 

allow for brain identification and localization of these cells following injury. 
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In sum, this dissertation provides further characterization of DBI-mediated TAI 

pathology and neuroinflammatory responses. TAI within the perisomatic domain results 

in ultra-rapid secondary axotomy with consequent Wallerian change and is highlighted 

by apparent axolemmal impermeability. The neuroinflammatory response 

accompanying this pathology is characterized by early, yet initially uncoordinated, and 

persistent activated microglial / macrophage reactivity which fails to target sites of 

axonal injury during the acute post-injury stages and does not reveal evidence of 

immune cell clustering / nodule formation. However, macrophages approximated 

somata of injured neurons but did not reveal somatic engulfment or phagocytic activity. 

These immunological findings are distinct from those observed following focal brain 

injury and further illustrate the heterogeneous responses to DBI. Taken together, these 

studies provide the impetus for future examinations of the mechanisms of DBI-related 

pathologies, namely DAI pathogenesis and secondary neuroinflammatory responses. 

From a clinical standpoint, the overall number of TBI cases has fallen in recent 

years; however, one must be careful when interpreting this statistic. If TBI incidents are 

stratified by their level of severity, severe cases have decreased while mild to moderate 

cases have remain constant or increased. Improvements in highway safety, vehicle 

construction, and personal protective equipment have greatly contributed to the decline 

in severe incidents. However, individuals suffering mild to moderate injury often do not 

seek medical treatment due to the relative paucity of symptoms only to later present 

with physical andlor cognitive issues requiring medical attention. In that mild to 

moderate TBI often includes significant DBI, it is hoped that this work will further 
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stimulate research into the mechanisms of DBI pathology with the goals of ameliorating 

or eliminating DAI via targeted therapeutic interventions and manipulating 

neuroinflammation to maximize neuroprotective effects while minimizing 

neuropathological consequences. 
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